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ABSTRACT. To a compact tropical variety of arbitrary dimension, we associate a collection
of intermediate Jacobians defined in terms of tropical homology and tropical monodromy.
We then develop an Abel–Jacobi theory in the tropical setting by defining functorial Abel–
Jacobi maps. We introduce, in particular, tropical Albanese varieties and formulate ob-
structions to algebraic equivalence of tropical cycles. In dimension 1, we show that this
recovers the existing Abel–Jacobi theory for tropical curves.

As an application, we consider the Ceresa class of a tropical curve which is defined
as the image of the Ceresa cycle in an appropriate intermediate Jacobian under the Abel–
Jacobi map. We give an explicit formula for this class entirely in terms of the combinatorics
of the tropical curve.
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1. INTRODUCTION

Associated to a smooth and projective variety X of dimension d is a collection of in-
termediate Jacobians JH2k+1(X), for 0 ≤ k ≤ d − 1, which were introduced by Grif-
fiths in [Gri68]. These are complex tori that interpolate between the well-known abelian
varieties associated with X: the Picard variety Pic(X) = JH2d−1(X) and the Albanese
Alb(X) = JH1(X). For algebraic curves these two abelian varieties are naturally iso-
morphic, and this common variety is called the Jacobian and denoted by Jac(X). Fur-
thermore, the Abel–Jacobi map from the theory of algebraic curves generalizes to higher-
dimensional varieties as a map

AJ : A◦
k (X) → JH2k+1(X)
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where A◦
k (X) is the Chow group of homologically trivial k–dimensional cycles in X mod-

ulo rational equivalence. Therefore, intermediate Jacobians have been used to distinguish
between homological, algebraic, and rational equivalence of cycles [Cer83, Cle83, Gri69,
Voi00].

The theory of tropical curves has seen intense development in recent years out of a de-
sire to understand the asymptotic geometry of a degenerating family of algebraic curves.
Much of the theory described above for algebraic curves exists in an analogous way for
tropical curves. Notably, Mikhalkin and Zharkov in [MZ08] associate to a tropical curve
Γ its Jacobian Jac(Γ) and an Abel–Jacobi map

AJ : Γ → Jac(Γ).

A version of this construction for finite graphs appears in [BdlHN97, BN07].
A degenerating family of algebraic curves may be described succinctly as a (smooth

and complete) curve X over a field K equipped with a nontrivial nonarchimedian norm.
To such a curve, we can associate a tropical curve Γ, by taking a skeleton of the Berkovich
analytification of X, see [Ber90, BPR16]. Furthermore, the Jacobian and Abel–Jacobi map
of Γ are related in a similar way to the Jacobian and Abel–Jacobi map of X [BR15, AN25].
Given this connection, tropical geometry incorporates combinatorial and computational
techniques to cast new light on old theorems and to derive new results in algebraic ge-
ometry. We refer to the survey papers [BJ16, JP21] for an account of recent development
in this direction.

The aim of this paper is to initiate the development of an Abel–Jacobi theory for tropi-
cal varieties of arbitrary dimension.

Let X be a d-dimensional tropical variety. For A = Z or R, denote by Hp,q(X, A) the
(p, q)–tropical homology of X for 0 ≤ p, q ≤ d, introduced in [IKMZ19]. The tropical
monodromy map is a linear map N: Hq,p(X, A) → Hq+1,p−1(X, R). Let

Lp,q(X) := im(Np−q : Hq,p(X, Z) → Hp,q(X, R)).

For p ≥ q, we define the (p, q)–th (tropical) intermediate Jacobian of X by

JHp,q(X) :=
Hp,q(X, R)

Lp,q(X)
.

In general, JHp,q(X) is noncompact, but if X satisfies the weight-monodromy property as
in (WMP), e.g., if X is a projective tropical manifold or more generally if X is a Kähler
tropical variety, then JHp,q(X) is a real torus; see § 2.12 for details. In [MZ14], Mikhalkin
and Zharkov define a tropical intermediate Jacobian for projective tropical manifolds
when p + q = d, see Remark 3.2 for a comparison to our definition in this setting.

Denote by Ap(X) the Chow group of p-dimensional tropical cycles of X modulo ratio-
nal equivalence, see § 3.2. There is a cycle class map:

clX : Ap(X) → Hp,p(X, Z).

Define A◦
p(X) to be the kernel of the cycle class map, i.e., the group of homologically trivial

p-cycles modulo rational equivalence. Our first result is the following theorem.

Theorem 1.1. There is a well-defined (tropical) Abel–Jacobi map

AJ : A◦
p(X) → JHp+1,p(X).
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It is functorial in the following sense. For any morphism φ : X → X′ of tropical varieties, we
have the following commutative diagram:

A◦
p(X) JHp+1,p(X)

A◦
p(X′) JHp+1,p(X′).

AJ

φ∗ φ∗

AJ

We briefly describe our construction of the Abel–Jacobi map. Given a homologically
trivial cycle in A◦

p(X), we choose a (p, p + 1)–chain γ that bounds this cycle. We apply
the monodromy map to γ and show that, by pairing with (p + 1, p)–cocycles, it yields
a well defined element in JHp+1,p(X). Furthermore, we show that the Abel–Jacobi map
vanishes on cycles rationally equivalent to 0. See § 3.

Our first application of this construction is to find an obstruction to algebraic equiva-
lence between tropical cycles. We define the following subgroup

Kp,q(X) := im(Np−q−1 : Hq+1,p−1(X, Z) → Hp,q(X, R)).

Set

Qp,q(X) :=
Hp,q(X, R)

Kp,q(X)
.

If the monodromy map N is integral, then Kp,q(X) contains Lp,q(X), but in general the
two spaces are unrelated. In any case, N: Hp,q(X, R) → Hp+1,q−1(X, R) induces a map

N: JHp,q(X) → Qp+1,q−1(X).

Theorem 3.11. If a p-cycle α is algebraically equivalent to 0, then

N(AJ(α)) = 0 in Qp+2,p−1(X).

In the case of tropical curves, Zharkov [Zha15] and Ritter [Rit24] describe similar obstruc-
tions for tropical Ceresa cycles to be algebraically equivalent to 0, see § 6.4.

Next, we define the Albanese of a Kähler tropical variety X as Alb(X) = JH1,0(X). This
is a tropical abelian variety when the monodromy of X is rational. We prove that Alb(X)
satisfies a universal property similar to that in the classical setting, see Proposition 3.13.

In the case of tropical abelian varieties, or more generally tropical compact tori, we
provide an explicit description of the monodromy map, yielding a concrete description
of the intermediate Jacobians.

We now discuss the case of tropical curves and their Jacobians. A tropical curve is a
tropical variety of dimension 1, which roughly speaking means that it is a compact metric
graph endowed with an integral affine structure. Recall that a metric graph is a metric
space associated to a pair (G, ℓ) where G = (V, E) is a finite graph and ℓ : E → R>0 is
an edge-length function. Precisely, we plug in an interval of length ℓ(e) between the two
endpoints of each edge e, and the metric is the path metric. Different pairs might yield
the same tropical curve, a fixed pair (G, ℓ) is called a model of Γ.

Any tropical curve is Kähler. We show that JH1,0(Γ) is naturally isomorphic to the
Jacobian Jac(Γ) of Γ and via this isomorphism, the above AJ : A◦

0(Γ) → JH1,0(Γ) is the
Abel–Jacobi map from [MZ08]. See Theorem 5.1.
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Classically, a natural and important instance of a homologically trivial cycle is the
Ceresa cycle of an algebraic curve. Let X be an algebraic curve. To a point ♭ ∈ X corre-
sponds two maps:

(1.1) X → Div0(X), x 7→ [x]− [♭] and x 7→ [♭]− [x].

Composing with the Abel–Jacobi map defines two embedding

X ↪→ Jac(X).

The images of X determine two dimension-1 cycles [X♭] and [X−
♭
] which have the same

homology class. The Ceresa cycle is the algebraic cycle [X♭]− [X−
♭
] in A◦

1(Jac(X)). Ceresa’s
theorem [Cer83] asserts that the cycle [X♭]− [X−

♭
] is not algebraically equivalent to 0 for

a very general curve of genus at least 3 in the corresponding moduli space.
In the tropical setting, the Ceresa cycle of a connected tropical curve Γ is defined in an

analogous way. First, the Jacobian Jac(Γ) of Γ is a Kähler tropical variety of dimension g,
where g is the first Betti number of Γ; this is more commonly referred to as the genus of
Γ. Using the tropical analog of the maps in (1.1), a point ♭ ∈ Γ yields two homologous 1-
cycles [Γ♭] and [Γ−

♭
]. The Ceresa cycle relative to the basepoint ♭ is the 1-cycle [Γ♭]− [Γ−

♭
].

This is homologically trivial and it gives rise, via the Abel–Jacobi map, to the Ceresa class
v♭(Γ) of Γ in JH2,1(Jac(Γ)). Our next theorem provides an explicit description of v♭(Γ).

As in the classical setting, Hp,q(Jac(Γ), R) can be expressed in terms of the homology
of Γ:

(1.2) Hp,q(Jac(Γ), R) ∼= ∧qH0,1(Γ, R)⊗∧pH1,0(Γ, R).

Explicitly, H0,1(Γ, R) is the first singular homology group H1(Γ, R) of Γ and H1,0(Γ, R) is
the dual of H0,1(Γ, R) with respect to the Poincaré duality pairing

(1.3) ∩ : H0,1(Γ, R)× H1,0(Γ, R) → H0,0(Γ, R) = R.

Let (G, ℓ) be a model of Γ with G = (V, E). Fix an orientation of each edge; denote by
se the source of e and by te the target of e. Choosing a spanning tree T = (V, F), we
obtain a basis {aε

∣∣ ε ∈ Fc} of H0,1(Γ, R) where Fc = E \ F. Let {bε

∣∣ ε ∈ Fc} be the
dual basis in H1,0(Γ, R) with respect to the pairing in (1.3). For each edge e ∈ F, we
define be ∈ H1,0(Γ, R). The removal of e from the spanning tree separates T into two
connected components, one connected component, denoted by S1, contains se and the
other, denoted by S2, contains te. Then,

(1.4) be = ∑
sε∈S2
tε∈S1

bε − ∑
sε∈S1
tε∈S2

bε.

Geometrically, be is the unit tangent vector to the oriented edge e of Γ inside Jac(Γ). We
also have a map sgn♭

T : F × Fc → {0,±1,±2} which, roughly speaking, records the posi-
tions of each pair of edges e ∈ F and ε ∈ Fc relative to ♭, see § 6.1.

Theorem 6.4. Given a tropical curve Γ with model (G = (V, E), ℓ), a point ♭ ∈ V, and spanning
tree T = (V, F), the tropical Ceresa class v♭(Γ) is given by

v♭(Γ) = ∑
e∈F
ε∈Fc

sgn♭
T(e, ε) ℓ(e) aε ⊗ (bε ∧ be).
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Next we consider the dependence on the base point ♭. Define the homology class

ω = ∑
ε∈Fc

aε ⊗ bε in H0,1(Γ, R)⊗ H1,0(Γ, R) ∼= H1,1(Jac(Γ), R).

Given two points ♭, ♭∈ Γ, we prove in Theorem 6.6 that their Ceresa classes are related
by the simple formula

(1.5) v♭(Γ)− v ♭(Γ) = −2AJ(♭− ♭) ∧ ω in JH2,1(Jac(Γ)).

This is a tropical analog of a formula provided by Hain and Reed in [HR04, p.204] see
also [Pul88]. We define

JHp+1,p(Jac(Γ)) :=
Hp+1,p(Jac(Γ), R)

ω ∧ Hp,p−1(Jac(Γ), R) + Lp+1,p(Jac(Γ))
.

The image of v♭(Γ) under the natural quotient map JH2,1(Jac(Γ)) → JH2,1(Jac(Γ)) is inde-
pendent of ♭ by Equation (1.5). We call this class the unpointed Ceresa class of Γ, and denote
it by v(Γ). We have a formula for v(Γ) similar to that of v♭(Γ) appearing in Theorem 6.4.

We define a sign function sgnT : F × Fc → {0,±1} in the following way, see Figure 6.3.
As before, an edge e ∈ F separates the spanning tree T into two connected components:
S1, which contains se, and S2, which contains te. Given another edge ε ∈ Fc, we set

sgnT(e, ε) =


1 if ε ∈ S1,
−1 if ε ∈ S2,
0 otherwise.

Theorem 6.8. Given a tropical curve Γ with model (G = (V, E), ℓ) and spanning tree T =
(V, F), its unpointed tropical Ceresa class is

v(Γ) = ∑
e∈F
ε∈Fc

sgnT(e, ε) ℓ(e) aε ⊗ (bε ∧ be) in JH2,1(Jac(Γ)).

When Γ is hyperelliptic and ♭ is a Weierstrass point, the Ceresa cycle [Γ♭]− [Γ−
♭
] equals 0,

and so v(Γ) = 0.
In the case where the edge lengths of Γ are positive integers, the unpointed tropical

Ceresa class relates to the tropical Ceresa class defined in [CEL24], which in turn relates
to the ℓ-adic Ceresa of an algebraic curve defined over C((t)) as studied in [HM05]. In
[CEL24], there is a finite group B(δΓ) and the tropical Ceresa class n(Γ) is an element
of B(δΓ) which is defined using the Johnson homomorphism on the Torelli group of a
topolocial surface (more accurately, the extension of this homomorphism to the mapping
class group by Morita [Mor93]).

In order to relate these two classes, we discovered a new conjectural formula for the
Johnson homomorphism which we think could be of independent interest. We briefly
describe the formula and refer to Appendix A for details.

Let Σg be an orientiable, compact, topological surface of genus g ≥ 3. For a simple
closed curve γ, denote by Tγ the (left-hand) Dehn-twist about γ. Suppose there are non-
separating simple curves γ, γ′ and β1, . . . , βg such that

(1) γ and γ′ are homologous and disjoint from each βi, and
(2) the curves β1, . . . , βg are pairwise disjoint and their homology classes form a basis

for a Lagrangian subspace of H1(Σg, Z).
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FIGURE 1.1. For this arrangement of curves, the values of sgn
γ,γ′ on β1,

β2, β3, β4, β5 are −1, 1, 1, 0, 0, respectively.

We define a sign function sgn : {β1, . . . , βg} → {0,±1} that records the positions of the
βi’s relative to γ and γ′, see Figure 1.1 and § A.3. Finally, suppose α1, . . . , αg are curves
such that the homology classes [α1], . . ., [αg], [β1], . . ., [βg] form a symplectic basis of
H1(Σg, Z).

Conjecture A.4. The image of the Johnson homomorphism on the mapping class TγT−1
γ′ is

g

∑
i=1

sgn
γ,γ′(βi) [αi] ∧ [βi] ∧ [γ].

When γ and γ′ are disjoint, this recovers the well-known formula for the Johnson ho-
momorphism of a bounding pair map as described in [FM12, § 6.6.2]. If this conjecture
holds, we obtain an explicit formula for the Johnson homomorphism of mapping classes
of the form TγT−1

γ′ which are not necessarily bounding pair maps.
We prove in Appendix A that for a tropical curve Γ with integer edge-lengths, there is

an embedding ΦΓ of B(δΓ) into the torsion part of JH2,1(Jac(Γ)). Furthermore, we show
the following comparison result.

Theorem A.3. Let Γ be a tropical curve with integral edge lengths. If Conjecture A.4 holds, then
we have

ΦΓ(n(Γ)) = v(Γ).
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2. PRELIMINARIES ON TROPICAL VARIETIES

In this section, we gather basic definitions and results about tropical varieties. These
constructions are known in the literature, and our presentation is close to [JSS19, JRS18,
AP20], to which we refer for more details.
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2.1. Fans. Let N be a free abelian group of finite rank and denote its dual by M = N⋆ =
Hom(N, Z). Let NQ, NR, MQ, MR be the corresponding rational and real vector spaces,
we thus have MQ = N⋆

Q and MR = N⋆
R.

If σ is a polyhedral cone in NR, we denote by Nσ,R the real vector subspace of NR

generated by points of σ, and set Nσ
R := NR

/
Nσ,R. We denote by dσ the dimension of

σ which is equal to that of Nσ,R. If σ is rational, we also get natural full rank lattices
Nσ ⊂ Nσ

R and Nσ ⊂ Nσ,R.
A polyhedral cone in NR is called strongly convex if it does not contain any line. A fan

Σ of dimension d in NR is a finite, non-empty, collection of strongly convex polyhedral
cones in NR which verifies the following two properties:

(1) for any cone σ ∈ Σ, any face τ of σ belongs to Σ, and
(2) for any pair of cones σ, η ∈ Σ, the intersection σ ∩ η is a common face of σ and η.

Given two cones σ and τ, we write τ ⪯ σ if τ is a face of σ, and we write τ ≺· σ if τ is a
codimension one face of σ. This defines a partial order on the set of cones of Σ. The fan
Σ is rational if each cone σ ∈ Σ is rational. All the fans which appear in this paper are
assumed to be rational.

We denote by Σk the set of k-dimensional cones of Σ. We call elements of Σ1 rays of Σ.
The cone {0} is denoted by 0. Note that any k-dimensional cone σ in Σ is determined by
its set of rays in Σ1. A fan Σ is called pure dimensional if all its maximal cones have the
same dimension.

We denote by |Σ| the support of Σ, which by definition is the union of the cones of Σ.
A fanfold X in NR is a closed subset which is the support of a rational fan in NR.

2.2. Normal vectors. Let Σ be a rational fan of pure dimension d. For a cone σ in Σ and
a face τ of codimension one in σ, the space Nτ,R divides Nσ,R into two closed half-spaces.
One of these half spaces contains σ, and by a unit normal vector to τ in σ we mean any
vector v ∈ Nσ which lies in this half space, and which satisfies Nτ +Zv = Nσ. We denote
a choice of such an element by nσ/τ in this paper. The corresponding vector in the quotient
lattice Nτ

σ := Nσ

/
Nτ is well-defined and is denoted by eτ

σ.

2.3. Tropical fans and tropical fanfolds. A tropical fan is a pair (Σ, ω) such that Σ in NR

is a rational fan of pure dimension d, for a natural number d ∈ Z≥0, and ω : Σd → Z \ {0}
is a tropical weight function. This means that ω satisfies the balancing condition: for any
cone τ of dimension d − 1 in Σ, we have

∑
σ·≻τ

ω(σ)nσ/τ ∈ Nτ, equivalently ∑
σ·≻τ

ω(σ)eτ
σ = 0 in Nτ.(2.1)

The tropical fan is effective if ω(σ) > 0 for all σ ∈ Σd. The support of a tropical fan is
called a tropical fanfold.

2.4. Canonical compactifications of fans and fanfolds. A rational fan Σ in NR gives rise
to the tropical toric variety TPΣ which is a partial compactification of NR [BGGJK21,
Kaj08, OR11, Pay09, Thu07]. This partial compactification coincides with the tropical-
ization of the toric variety PΣ associated to Σ. The canonical compactification Σ of Σ is
defined as the closure of Σ in TPΣ. Its support is the canonical compactification of the
fanfold X = |Σ| with respect to Σ. We briefly discuss the construction and the induced
stratification.
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We denote by T := R ∪ {∞} the extended real line endowed with its natural topology
that extends the topology R by adding a basis of open neighborhoods of ∞ consisting
of half open intervals (a, ∞], a ∈ R. The addition of real numbers extends to T. The
resulting monoid (T,+) is called the monoid of tropical numbers. Let T+ := R+ ∪ {∞}
be the submonoid of non-negative tropical numbers. Denote by M the category of R+-
modules.

First we consider the tropical toric variety associated to a rational polyhedral cone σ in
NR. The dual cone σ∨ and orthogonal plane σ⊥ are defined by

σ∨ :=
{

u ∈ MR

∣∣ ⟨u, v⟩ ≥ 0 ∀ v ∈ σ
}

, and σ⊥ :=
{

u ∈ MR

∣∣ ⟨u, v⟩ = 0 ∀ v ∈ σ
}

.

Let Uσ := HomM(σεe, T). The topology on T induces a natural topology on Uσ. Further-
more, the natural pairing ⟨u, v⟩ on MR × NR extends to a pairing MR × Uσ → T. Given a
face τ of σ, the tropical torus orbit of τ is

O(τ) = {v ∈ Uσ

∣∣ ⟨u, v⟩ = ∞ exactly for u ∈ σ∨ \ τ⊥}.

The subspaces {O(τ)
∣∣ τ ⪯ σ} form a stratification of Uσ. Moreover, O(τ) may be

identified with Nτ
R in the following way. Denote by ∞τ the element of Uσ given by

∞τ(u) =

{
0 if u ∈ τ⊥,
∞ if u ∈ σ∨ \ τ⊥.

Under the natural identification Nτ
R = HomM(τ⊥, R), we have

O(τ) = ∞τ + Nτ
R ⊂ Uσ.

Viewing τ as a cone by itself, we may also form Uτ and we have an inclusion Uτ ⊂ Uσ.
The tropical toric variety TPΣ of a rational polyhedral fan Σ in NR is obtained by gluing
Uσ, for σ ∈ Σ, along these inclusions. If η ⪯ τ ⪯ σ, then we may form O(η) in either Uτ

or Uσ, but they are naturally identified under the inclusion Uτ ⊂ Uσ. Therefore, we have
a stratification into tropical torus orbits

TPΣ =
⊔

σ∈Σ

O(σ).

The canonical compactification of σ, denoted by σ is the closure of σ in Uσ. Under the
natural identification σ = HomM(σ∨, R+) ⊂ Uσ, we have

σ = HomM(σ∨, T+) ⊂ Uσ.

Similarly, the canonical compactification Σ of Σ is defined as the closure of Σ in TPΣ. We
can explicitly describe the polyhedral structure on Σ in the following way. Consider the
cones τ ≺ σ. We define

στ
∞ := ∞τ + σ = {v ∈ σ

∣∣ ⟨u, v⟩ = ∞ exactly for u ∈ τ∨ \ τ⊥} ⊂ O(τ).

Under the identification O(τ) ≃ Nτ
R, we have that στ

∞ is the image of σ under the canon-
ical projection NR → Nτ

R. The collection of cones στ
∞, for σ ⪰ τ in Σ, form a fan Στ

∞ in
O(τ) with origin ∞τ. Under the isomorphism Nτ

R ≃ O(τ), the fan Στ
∞ is identified with

the star fan Στ of τ in Σ. For 0 ∈ Σ, we have Σ0
∞ = Σ.

The sedentarity of a point x ∈ TPΣ denoted sed(x) is defined as the cone σ ∈ Σ so that
x lies in the stratum O(σ). For an open subset U in Σ, we define the sedentarity fan of U
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as the subfan ΣU of Σ generated by the sed(x) for x ∈ U, and all of their faces. This is the
smallest subfan in Σ such that U lives in TPΣU .

Given a rational polyhedral fan Ξ and y ∈ Ξ, a basic open neighborhood of (∞, y) ∈
Tk × Ξ is an open set containing (∞, y) of the form

(2.2) (t, ∞]k × V ⊂ Tk × Ξ

where V ⊂ Ξ is a small open ball in Ξ centered at y which does not meet any cone τ of Ξ
with y ̸∈ τ.

Suppose now that Σ is simplicial, i.e., each cone σ of Σ contains precisely dσ rays of
Σ. Fix a point x ∈ Σ, let δ = sed(x), and let x0 be the image of x under the natural
isomorphism Σδ

∞ ≃ Σδ. A basic open neighborhood of x is an open neighborhood Z-linearly
isomorphic to a basic open neighborhood of (∞, x0) ∈ Tdδ × Σδ as in Equation (2.2).

2.5. Extended polyhedral spaces. Let X be a connected Hausdorff topological space. A
polyhedral chart is a pair (W, ϕ) where W ⊂ X is a nonempty open subset and ϕ : W → U
is a homeomorphism to a basic open neighborhood U of a point in the canonical com-
pactification of a simplicial fan. Suppose (Wi, ϕi) and (Wj, ϕj), with ϕi : Wi → Ui and
ϕj : Wj → Uj, are two polyhedral charts. Denote by Ni and Nj the finite-rank lattices such
that Ni,R and Nj,R are the ambient vector spaces containing the simplicial fans used to
define Ui and Uj, respectively. These charts are compatible if Wi ∩ Wj = ∅ or Wi ∩ Wj ̸= ∅
and the transition map

ϕi ◦ ϕ−1
j : ϕj(Wi ∩ Wj) → ϕi(Wi ∩ Wj)

is induced by a global Z-linear map ψij : Nj → Ni that induces a Z-linear isomorphism
between the sedentarity fan of ϕj(Wi ∩ Wj) and the sedentarity fan of ϕi(Wi ∩ Wj).

An extended polyhedral space X is a connected Hausdorff topological space X with an
atlas of pairwise compatible polyhedral charts {(Wi, ϕi)}i∈I . A map ϕ : W → U is com-
patible with the atlas {(Wi, ϕi)}i∈I if adding the pair (W, ϕ) to this atlas also produces an
atlas.

Proposition 2.1. If φ : W → U and φ′ : W ′ → U′ are two polyhedral charts that are each
compatible with the atlas {(Wi, ϕi)}i∈I , then (W, φ) and (W ′, φ′) are compatible with each other.

Proof. Without loss of generality assume that W ∩ W ′ ̸= ∅. Let φi : Wi → Ui be a chart
in the atlas such that Wi ∩ W ∩ W ′ ̸= ∅. Denote by N, N′, and Ni the lattices underlying
U, U′, and Ui, respectively. By compatibility, we have Z-linear maps ψi : N → Ni and
ψ′

i : Ni → N′ that restrict to the transition maps ϕi ◦ φ−1 and φ′ ◦ ϕ−1
i . These transition

maps preserve sedentarity fans. Let θi : N → N′ be the composition ψ′
i ◦ ψi. Thus, we

have a collection of Z-linear maps {θi : N → N′ ∣∣ i ∈ I and Wi ∩W ∩W ′ ̸= ∅} that agree
locally on intersections of the form ϕ(Wi ∩Wj ∩W ∩W ′). Denote by N0 and N′

0 the lattices
in the vector spaces generated by ϕ(W ∩ W ′) and ϕ′(W ∩ W ′), respectively. It follows
from the local compatibility above that the maps θi induce an isomorphism θ : N0 → N′

0,
from which obtain the existence of a global Z-linear map N → N′ inducing the transition
map ϕ(W ∩ W ′) → ϕ′(W ∩ W ′). Moreover, we claim that θ induces an isomorphism
between the sedentarity fans. To see this, observe that each θi induces a bijection between
sedentarity types, and by the compatibility of the θi’s on the intersections, this implies
that θ also induces a bijection between sedentarity types. From this we deduce that the
image under θ of the relative interior of each cone in the sedentarity fan of ϕ(W ∩ W ′)
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intersects the relative interior of a unique cone of the sedentarity fan of ϕ′(W ∩W ′). Since
this also holds for θ−1, we get the desired claim. □

Thus, we may form the completion of {(Wi, ϕi)}i∈I by adding to it all compatible polyhe-
dral charts (W, ϕ). An extended polyhedral space is finite if it has a finite atlas of charts.
If X is compact, then it is automatically finite.

2.6. Sedentarity types. We say that two points x, y ∈ Wi for a chart (Wi, ϕi) have the same
sedentarity if ϕ(x) and ϕ(y) have the same sedentarity in Ui. The transitive closure of this
relation defines a stratification of X into sedentarity types. We denote by Sed(X) the set
of sedentarity types of X. In this way, sedentarity types play the role of generic points
in the sedentarity stratification of X similar to the generic points of stratified algebraic
varieties.

The set Sed(X) comes with a natural partial order defined as follows. For two seden-
tarity type s1 and s2, we have s1 ≺ s2 if one (equivalently, each) point of sedentarity type
s2 is the limit of points of sedentarity type s1. For each s ∈ Sed(X), we denote by Xs the
set of points of sedentarity type s.

A point x ∈ X is called a regular point if x has a neighborhood homeomorphic to an
open subset of Rd for some d. The regular locus of X is the subset Xreg of regular points.

Proposition 2.2. Let X be a connected extended polyhedral space. Then, Sed(X) has a minimum.

By a slight abuse of notation, we denote by 0 the minimum element of Sed(X).

Proof of Proposition 2.2. Denote by d the dimension of X. It follows from the connectivity
of X that all the charts appearing in the defining atlas of X are of dimension d. Let s be a
minimal element of Sed(X). The sedentarity stratum Xs is of dimension d. We claim that
the closure Xs of Xs in X is open. To see this, let p be a point of Xs. Since in any chart
which contains p, there is a unique minimal sedentarity type, and p is in the closure of
Xs, this implies that the full chart is included in Xs, proving the claim.

By the connectivity of X, we infer that X = Xs, which proves the proposition. □

2.7. Tropical varieties. Let X be an extended polyhedral space. A tropical weight function
is a function ω : Xreg → Z \ {0} that satisfies the balancing condition in the following
sense. On each open chart (Wi, ϕi), ϕi : Wi → Ui, the restriction ω|Wi,reg

is equal to the
pullback of a tropical weight function on Σi (restricted to Ui,reg). Note that the regular
locus of Σi does not meet the boundary at infinity.

A tropical variety is a pair (X, ω) consisting of an extended polyhedral space X and a
tropical weight function ω. If s is a sedentarity type of X, then Xs inherits the structure
of a tropical variety from X.

We now discuss (rational) polyhedral structures on tropical varieties. An affine half-
space is a subset of the form {v ∈ NR

∣∣ ⟨u, v⟩ ≤ b} where u ∈ MR and b ∈ R. A
polyhedron in NR is a finite intersection of affine half-spaces. Given a polyhedron Q, its
tangent space TQ is the linear space generated by differences of pairs of points in Q. A
polyhedron Q is rational if the intersection N ∩ TQ is a full rank lattice in TQ. A (rational)
polytope in Σ is the closure of a (rational) polyhedron Q in a face η of Σ such that the
recession cone of Q is a face of η.

Let X be an extended polyhedral space. A (rational) polytope in X is a closed subset
P ⊂ X such that, if (W, ϕ) is a chart with P ⊂ W, then ϕ(P) is a (rational) polytope. A
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(rational) polyhedral structure on X is a collection of (rational) polytopes C of X satisfying
the following conditions.

• If P ∈ C is contained in the chart (W, ϕ) and F is a face of ϕ(P), then ϕ−1(F) ∈ C.
• If P1, P2 ∈ C and (W1, ϕ1), (W2, ϕ2) are charts containing P1 and P2, respectively,

then P12 = P1 ∩ P2 is in C, the set ϕ1(P12) is a face of ϕ1(P1), and ϕ2(P12) is a face
of ϕ2(P2).

Not all tropical varieties admit a rational polyhedral structure, however, they all admit a
polyhedral structure. Furthermore, all full-dimensional polytopes are rational with our
definition.

Throughout the rest of this section, X will be a tropical variety, endowed if needed
with a (rational) polyhedral structure C, in which case we denote by ⪯ the partial order
given by inclusion of faces. We typically suppress ω from the notation.

2.8. Tropical homology. We briefly review the definition of tropical homology and co-
homology groups of a tropical variety X, introduced by Itenberg–Katzarkov–Mikhalkin–
Zharkov [IKMZ19]; see [MZ14, JSS19, JRS18, GS23, AP20] for further results. See also
related constructions for affine manifolds with singularities in [GS10, Rud21].

We begin with the definition via (co)sheaves. First, consider the case X = Σ. Let
η ⊂ X be a face contained in some O(τ). The tangent space Tη is the real vector subspace
of Nτ

R ≃ O(τ) spanned by η. The tangent space has a natural full-rank lattice which we
denote by Nη.

The cosheaf Fp is defined in the following way. Let x ∈ Σ. Then, for any basic open
subset U of x, define

Fp(U) = ∑
η∋x

sed(η)=sed(x)

∧pTη and FZ
p (U) = ∑

η∋x
sed(η)=sed(x)

∧pNη.

If Ui and Uj are basic open sets with Ui ⊂ Uj, then we have natural maps Fp(Ui) →
Fp(Uj) and FZ

p (Ui) → FZ
p (Uj). As basic open sets form a basis for the topology of Σ, we

may define Fp(U) and Fp(U) for an arbitrary open set U to be

Fp(U) = lim−→
V⊆U basic

Fp(V), and FZ
p (U) = lim−→

V⊆U basic

FZ
p (V).

These define constructible cosheaves Fp and FZ
p . We denote the restrictions to an open

subset U of Σ by Fp|U and FZ
p |U , respectively. Also we define

Fp(U) = Fp(U)⋆ and Fp
Z(U) = (FZ

p (U))⋆.

In a similar way, Fp and Fp
Z are constructible sheaves on X.

Now consider the case of a general compact tropical variety X. Let ϕ : W → U be a
chart. Then, we define

Fp|W = ϕ∗(Fp|U) and FZ
p |W = ϕ∗(FZ

p |U).

These glue together to form cosheaves Fp and FZ
p , respectively, on X. The (integral) tropical

cosheaf homology of X, denoted by Hp,q(X, R) (respectively, Hp,q(X, Z)) is the q-cosheaf
homology of Fp (respectively, FZ

p )

Hp,q(X, R) = Hq(X, Fp), respectively, Hp,q(X, Z) = Hq(X, FZ
p ).
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In a similar way, we glue the restrictions

Fp|W = ϕ∗(Fp|U) and Fp
Z|W = ϕ∗(FZ

p |U)

to form the sheaves Fp and Fp
Z on X. The (integral) tropical sheaf cohomology of X is

Hp,q(X, R) = Hq(X, Fp), respectively, Hp,q(X, Z) = Hq(X, Fp
Z).

When X is endowed with a polyhedral structure, the above groups can be computed
using cellular homology and cohomology.

Let P be a k-dimensional polytope in Σ for a fan Σ in NR, and denote by TP the tangent
space to P. When P is rational, we have the full rank integral lattice NP ⊂ TP.

An orientation of P is a choice of one of the two half-lines issued from the origin in
the one dimensional real space ∧kTP. When P is rational, we denote by vP the primitive
integral vector which generates this half-line. In this case, we frequently refer to this
canonical multivector vP as the orientation of P.

If P is a (rational) polytope of the extended polyhedral space X, then an orientation
of P is given by a choice of orientation of ϕ(P) for some chart (W, ϕ) with P ⊂ W. This
induces an orientation on ϕ′(P) where (W ′, ϕ′) is another compatible chart with P ⊂ W ′.
Now suppose X has a polyhedral structure C and assign an orientation to each element
P of C. For each pair of cells Q ≺· P (that is, Q is a codimension one face of P), we define
sgn(P, Q) by sgn(P, Q) = 1 if the induced orientation by P on Q coincides with the fixed
orientation on Q, and −1 otherwise. When P and Q are rational and live in the same
sedentarity stratum, we get the equation vP = sgn(P, Q)nP/Q ∧ vQ.

Denote by Cq the q-dimensional (oriented) polytopes in C. We define Fp(P) to be Fp(U)
for any basic open set U that meets the relative interior of P. Define the groups of (p, q)-
chains and integral (p, q)-chains by

Cp,q(X) =
⊕
P∈Cq

Fp(P) and Cp,q(X, Z) =
⊕
P∈Cq

FZ
p (P).

A (p, q)-chain Z is expressed as

Z = ∑
P∈Cq

[P, v], v ∈ Fp(P).

By convention, we set −[P, v] = [P,−v].
Suppose Q is a codimension one face of P. The inclusion Q ⊂ P induces a morphism

πP,Q : Fp(P) → Fp(Q). Define the boundary map

∂q : Cp,q(X) → Cp,q−1(X), ∂p([P, v]) = ∑
Q≺·P

sgn(P, Q)[Q, πP,Q(v)]

This defines a chain complex Cp,•(X):

· · · → Cp,q+1(X)
∂q+1−−→ Cp,q(X)

∂q−→ Cp,q−1(X) → · · ·

We have a similar chain complex Cp,•(X, Z) for integral chains. By [MZ14, Prop. 7], the
tropical homology group Hp,q(X, R) is the q-th homology group of Cp,•(X), and similarly
Hp,q(X, Z) is the q-th homology group of Cp,•(X, Z).
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2.9. Tropical subvarieties, tropical cycles and the cycle class map. Our presentation is
close to [MR], see [GS23] for a sheaf-theoretic description in terms of Minkowski weights.
Let X be a compact tropical variety of dimension d. A connected tropical subvariety of X is
the topological closure Y in X of a connected tropical variety (Y̊, ωY̊) with an embedding
Y̊ ↪→ Xs for a sedentarity type s ∈ Sed(X). We set ωY = ωY̊, and view (roughly speaking)
(Y, ωY) as a tropical variety with possible singularities along the boundary Y \ Y̊.

A tropical cycle of dimension k is a formal sum of connected tropical subvarieties of
dimension p in X. These form a group which we denote by Zp(X).

In this definition, we distinguish between, e.g., (Y, ω1) + (Y, ω2) and (Y, ω1 + ω2).
However, when we quotient Zp(X) by rational equivalence in § 3.2, these two cycles
become equal. See Remark 3.8.

Let (Y, ω) be a connected compact tropical variety of dimension k, and let C be a poly-
hedral structure on Y. The fundamental class of Y is the canonical element in Hk,k(Y, Z),
defined by

[Y] := ∑
P∈Ck

ω(P)[P, vP] ∈ Hk,k(Y, Z)

Note that this definition makes sense even if the polyhedral structure is not rational as
the polytopes P appearing in the above sum are full dimensional, and hence are rational.

The cycle class map for X

clX : Zp(X) → Hp,p(X, Z)

is defined as follows. Given a connected tropical subvariety (Y, ωY) of X defined as
the closure of ι : Y̊ ↪→ Xs, we consider the (p, p)–chain ∑Q∈Cp ω(Q)[Q, vQ], where C is a
polyhedral structure on Y̊, and Q is the closure of Q in X. The boundary of this (p, p)–
chain is zero. The corresponding element of Hp,p(X, Z) is clX(Y). We extend by linearity
this map to the full cycle space Zp(X).

2.10. Pushforward of cycles. Let X and X′ be connected compact tropical varieties. A
continuous function φ : X → X′ is a tropical morphism if φ(X0) is contained in a sin-
gle sedentarity stratum of X′

s of X′ and such that there are compatible atlases of charts
{(Wi, ϕi)}i∈I for X and {(W ′

j , ϕ′
j)}j∈J for X′

s so that, for each i ∈ I there is a j ∈ J with
φ(Wi) ⊂ W ′

j the composition ϕ′
j ◦ φ ◦ϕ−1

i is induced by a Z-linear map of lattices Ni → N′
j .

Suppose φ : X → X′ is a proper tropical morphism. The pushforward φ∗ : Zp(X) →
Zp(X′) is defined in the following way.

Let Y ↪→ X be a connected p-dimensional tropical subvariety of X.
First, replace X with the closure of the sedentarity stratum of X containing Y̊. Then

replace X′ with closure of the sedentarity stratum of X′ containing φ(X0). This means
that φ(X0) ⊂ X′

0.
Let C be a polyhedral structure of Y̊. By subdividing C if necessary, we may assume

that φ(P) is contained in a rational polytope of X′
0 for each full dimensional polytope P

in C. Then Y̊′ = φ∗(Y) is defined as a set by taking the union of all φ(P) for P ∈ Cp such
that φ(P) is p-dimensional.
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Next we define a weight function on Y̊′. Let Y̊′′ ⊂ Y̊′
reg be the subset of all points y′

such that φ−1(y′) is a finite subset of Y̊reg. Define ωY̊′ : Y̊′′ → Z \ {0} to be

ωY̊′(y′) = ∑
y∈φ−1(y′)

|Ny′/dφ(Ny)|ωY(y)

where dφ : TyY → Ty′X′ is the induced map on tangent spaces TyY and Ty′X′, Ny ⊂
TyY is the lattice of integer points, and Ny′ is the lattice of integer points of dφ(TyY).
By [MR, Prop. 6.2.1], the function ωY̊′ extends to a weight function ωY′ on Y̊′

reg so that
(Y̊′, ωY̊′) is a tropical variety. Let Y′ be the closure of Y̊′. This is a connected compact
tropical subvariety of X′, and φ∗(Y, ωY) = (Y′, ωY′). By extending linearly, this defines
φ∗ : Zp(X) → Zp(X′).

2.11. The monodromy operator. For a compact connected tropical variety X, we define
in this section the monodromy operator

N: Hp,q(X, R) → Hp+1,q−1(X, R).

Suppose P is a polytope of Σ and Q ⪯ P, with σ = sed(P). Because the recession
cone of P is a cone of Σσ, there is a unique largest face R of P with sed(R) = σ such that
πP,Q(R) = Q. A marking of P is a choice of point oQ ∈ Q for each face Q of P such that, if
sed(Q) ̸= σ, then oQ = πP,Q(oR) where R is the face defined above. A marked polytope is a
pair consisting of a polytope P together with a marking.

Let C be a polyhedral structure on X and choose points {oP}P∈C such that for each P ∈
C, the pair (ϕ(P), {ϕ(oQ)

∣∣ Q ⪯ P}) is a marked polytope, where (W, ϕ) is a compatible
chart with P ⊂ W. When Q ≺ P, we write wP,Q = πP,Q(ϕ(oP))− ϕ(oQ). At the level of
chains

(2.3) N([P, v]) = ∑
Q≺·P

sgn(P, Q)[Q, wP,Q ∧ πP,Q(v)].

where sgn(P, Q) is the sign function defined in § 2.8. By linear extension, this defines the
monodromy operator as a map

N: Cp,q(X) → Cp+1,q−1(X).

Denote by Bp,q(X) = im(∂p : Cp−1,q+1(X) → Cp,q(X)), i.e., the subgroup of (p, q)–boundaries
of X.

Theorem 2.3. The map N defined above is a chain map, and induces a map

(2.4) N:
Cp,q(X)

Bp,q(X)
→

Cp+1,q−1(X)

Bp+1,q−1(X)
.

Furthermore, we have the following.
(1) When restricted to a map N: Hp,q(X) → Hp−1,q+1(X), this map is independent of the

choice of markings and agrees with the eigenwave operator defined in [MZ14].
(2) N ◦ clX ≡ 0.
(3) If q = p + 1 and γ ∈ Cp,p+1(X) verifies ∂γ is represented by an algebraic cycle in

Cp,p(X)/Bp,p(X), then N(γ) ∈ Cp+1,p(X)/Bp+1,p(X) does not depend on the choice of
markings.
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(4) If φ : X → X′ is a tropical morphism of tropical varieties, then N ◦ φ∗ = φ∗ ◦ N at the
level of tropical homology as in (1). Furthermore, for γ as in (3), the boundary of φ∗(γ)
is represented by an algebraic cycle on X′ and we have N ◦ φ∗(γ) = φ∗ ◦ N(γ).

Proof. The first, second and half of the forth assertions are known; the new parts are (3)
and the second half of (4). We briefly discuss the proofs.

The statement N ◦ ∂ = ∂ ◦ N can be verified directly using the relation

sgn(P, Q)sgn(Q, R) = sgn(P, Q′)sgn(Q′, R)

for a pair of faces Q and Q′ of codimension one in P that share a face R of codimension
one.

The independence from the choice of markings can be verified directly. Then, (1) fol-
lows from the definition of eigenwave operator, see [JRS18, § 2.D.].

To prove (2), note that a rational polytope P with canonical multivector vP and a face
of codimension one Q in P, we have wP,Q ∧ πP,Q(vP) = 0. Using the definition of clX and
N, this gives N ◦ clX ≡ 0.

We now show (3). Let P be a polytope of dimension p + 1 and let v ∈ FZ
p (P) so that

[P, v] is in the support of γ. Choose a different marking o′P. Let N′ be the corresponding
monodromy map. Let u = ϕ(oP)− ϕ(o′P) and uQ = πP,Q(u). Then,

N(γ)− N′(γ) = ∑
Q≺·P

sgn(P, Q)[Q, uQ ∧ v] = ∂ ([P, u ∧ v]) ∈ Bp+1,p(X).

Now, let Q be a rational polytope of dimension p and choose a different marking o′Q.
Denote by N′ the corresponding monodromy map. Let u = ϕ(oQ)− ϕ(o′Q) and set γ =

∑P[P, zP]. Note that
∂γ = ∑

P
∑

R≺·P
sgn(P, R)[R, πP,R(zP)].

Because ∂γ is the fundamental class of an algebraic cycle, we can alternatively write ∂γ

∂γ = ∑
R

aR[R, vR]

where the sum is over rational polytopes R of dimension p and the aR are integers, all but
finitely many of them are zero. Combining the above expressions yields

N(γ)− N′(γ) = ∑
P·≻Q

sgn(P, Q)[Q, u ∧ πP,Q(zP)] = aQ[Q, u ∧ vQ] = 0.

For assertion (4), we only prove the second part. If ∂γ is represented by an algebraic
cycle α, then ∂φ∗(γ) is represented by φ∗(α). We express γ = ∑P[P, zp]. We claim that
φ∗N([P, zP])− Nφ∗([P, zP]) is a boundary. The only nontrivial verification is when φ(P)
is of dimension p or p+ 1; we only prove the former. Note that in this case φ∗([P, zP]) = 0.

We choose markings of the faces Q of codimension 1 in P satisfying dim φ(Q) = p in
such a way that φ∗(wP,Q) is constant. Because of (3) and the fact that N commutes with
∂, it is sufficient to treat the claim for these choices of markings. Then, φ∗N([P, zP]) −
Nφ∗([P, zP]) = φ∗N([P, zP]) and

φ∗N([P, zP]) = ∑
Q≺·P

dim φ(Q)=p−1

sgn(P, Q)[φ∗(Q), φ∗(wP,Q ∧ zP)].



16 OMID AMINI, DANIEL COREY, AND LEONID MONIN

Since φ∗(wP,Q ∧ zP) is constant, the claim that this is a boundary comes from the fact in
ordinary homology that the image of the boundary of a chain is a boundary. □

2.12. Kähler tropical varieties and the weight-monodromy property. A tropical variety
X satisfies the weight monodromy property if

(WMP) Np−q : Hq,p(X, R) → Hp,q(X, R) is an isomorphism for all p ≥ q.

A broad class of tropical varieties that satisfy (WMP) is given by projective tropical man-
ifolds and more generally by Kähler tropical varieties, as was shown in the work [AP20].
A tropical variety X is Kähler if there exists an atlas of charts (Wi, ϕi)i∈I with ϕi : Wi →
Ui ⊂ Σi, such that each tropical fan Σi is Kähler, and there is an ω ∈ H1,1(X, R) which
restricts to a Kähler form in each chart.

By a Kähler tropical fan, we mean a tropical fan whose star-fans have a Chow ring
which satisfies the Kähler package and in addition each of its open subsets verifies the
tropical Poincaré duality, for its tropical homology groups, see [AP23, AP20]. In particu-
lar, if X is a projective tropical manifold, i.e., X has an atlas of charts as above such that
each Σi has the same support as the Bergman fan of a matroid, then X is Kähler (and
hence satisfies the (WMP)). This follows from the Kähler package for the Chow ring of
Bergman fans proved in [AHK18], and extended to all simplicial fans with support a
Bergman fanfold in [ADH23, AP23], combined with Poincaré duality for Bergman fan-
folds proved in [JSS19]. More generally, by [AP23, AP24], any projective tropical variety
locally modeled by quasilinear fans is Kähler.

2.13. Tropical abelian varieties. We recall the definition of tropical abelian varieties, and
refer to [KY24] and the references therein for details. Let X = Rg/Zg. Let L be a lattice of
rank g in Rg. This L puts an integral affine structure on X which defines X as a tropical
variety. Let M be the dual lattice to L. A polarization on X is the data of a symmetric
positive definite bilinear form

Q : Rg × Rg → R

which verifies

Q(L, Zg) ⊆ Z.

The bilinear form Q induces an embedding

λ : Zg ↪→ M.

A tropical variety X is called tropical abelian variety if it admits a polarization Q.
Note that the quotient M

/
λ(Zg) is a finite abelian group. Denote by d1, . . . , dg the

corresponding invariant factors, i.e., d1| · · · |dg and M
/

λ(Zg) ≃ ⊕
j Z
/

djZ. The vector
(d1, . . . , dg) is called the type of Q, and Q is called a principal polarization if it has type
(1, . . . , 1). In this case, the map λ is an isomorphism, and we call X principally polarized.

3. TROPICAL INTERMEDIATE JACOBIANS AND ABEL–JACOBI MAP

In this section, we provide the constructions of the tropical intermediate Jacobians and
Abel–Jacobi maps and establish several of their fundamental properties.
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3.1. Main constructions. Let X be a tropical variety. Given a pair of integers q ≤ p, the
(p, q)–th define

Lp,q(X) := im
(
Np−q : Hq,p(X, Z) → Hp,q(X, R)

)
The intermediate Jacobian of X is

JHp,q(X) :=
Hp,q(X, R)

Lp,q(X)
.

When X satisfies (WMP), e.g., if X is Kähler, the map

Np−q : Hq,p(X, R) → Hp,q(X, R)

is an isomorphism, and so Lp,q(X) is a full-rank lattice of Hp,q(X, R). In this case, JHp,q(X)

is a real torus of dimension hp,q := dim Hp,q(X, R). In the following, we only consider
the situation where p − q = 1.

Proposition 3.1. If φ : X → X′ is a tropical morphism of tropical varieties, then the pushforward
φ∗ : Hp,q(X) → Hp,q(X′) induces a morphism φ∗ : JHp,q(X) → JHp,q(X′).

Proof. This follows from Theorem 2.3(4). □

Remark 3.2. For tropical manifolds, in the case the sum of p and q equals the dimension,
Mikhalkin and Zharkov define in [MZ14] a tropical intermediate Jacobian. We compare
their definition to the one we provide above. Let X be a projective tropical manifold of
dimension d, and let p ≥ q with p + q = d. The intermediate Jacobian defined in loc. cit.
is the torus

JHMZ
p,q(X) =

Hq,p(X, R)

Hq,p(X, Z)
.

Since X is a projective tropical manifold, it satisfies (WMP) as discussed in § 2.12. The
map Np−q provides an isomorphism from JHMZ

p,q(X) to JHp,q(X).
Since we are in the case p + q = d, there is a pairing on JHMZ

p,q(X) given by the mon-
odromy: the pairing between elements γ, γ′ ∈ Hq,p(X, R) is the intersection pairing be-
tween the two complementary degree cycles Np−q(γ) and γ′. This is a symmetric and
bilinear form which is nondegenerate, as conjectured by Mikhalkin and Zharkov (Con-
jecture 2 in their paper), and proved in [AP20]. But in general this pairing is not positive
by the signature calculation given in ibid. ⋄

Denote by Z◦
p (X) the set of homologically-trivial tropical cycles, i.e., the kernel of the cy-

cle class map clX : Zp(X) → Hp,p(X). The tropical Abel–Jacobi map is the homomorphism

AJ : Z◦
p (X) → JHp+1,p(X)

defined in the following way. Given a γ ∈ Cp,p,+1(X), define Ψγ : Zp+1,p(X, R) → R by

Ψγ(ω) = ⟨N(γ), ω⟩

where the pairing ⟨−,−⟩ is the natural duality pairing between Cp+1,p and Cp+1,p.

Proposition 3.3. Given γ, γ′ ∈ Cp,p+1(X, R), we have

Ψγ+γ′ = Ψγ + Ψγ′ .

For any θ ∈ Cp,p(X, R), we have Ψ∂θ = 0. In particular, Ψγ = Ψγ+∂θ .
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Proof. The first additivity statement is clear. The second statement on ∂θ follows from the
identity

Ψ∂θ(ω) = ⟨N(∂θ), ω⟩ = ⟨N(θ), dω⟩ = 0. □

Proposition 3.4. If ∂γ is in the kernel of N, e.g., if ∂γ is the fundamental chain of a tropical
p-cycle, then we have an induced homomorphism

Ψγ : Hp+1,p(X, R) → R.

Proof. If N∂γ = 0 and ω = dβ, then

Ψγ(dβ) = ⟨N(γ), dβ⟩ = ⟨∂N(γ), ω⟩ = ⟨N(∂γ), ω⟩ = 0

where the second-to-last equation follows from Theorem 2.3. □

By Proposition 3.4 and the universal coefficients theorem, we may view Ψγ as an element
of Hp+1,p(X, R) for γ such that ∂γ is in the kernel of N.

Proposition 3.5. For a homologically-trivial cycle α ∈ Zp,p(X, Z) and two chains γ, γ′ ∈
Cp,p+1(X, Z) such that ∂γ = ∂γ′ = α, the difference Ψγ − Ψγ′ lies in Lp+1,p(X).

Proof. By Proposition 3.3, Ψγ − Ψγ′ = Ψγ−γ′ . Since γ − γ′ ∈ Zp,p+1(X, Z), we have Ψγ−γ′

is represented by N(γ − γ′) in Hp+1,p(X, R), which lies in Lp+1,p(X). □

Therefore, we define the tropical Abel–Jacobi map by

AJ : Z◦
p (X) → JHp+1,p(X), AJ(α) = Ψγ

where γ ∈ Cp,p+1(X, Z) is any chain such that α = ∂γ. This tropical Abel–Jacobi map is
functorial in the following sense.

Proposition 3.6. If φ : X → X′ is a tropical morphism, then

Z◦
p (X) JHp+1,p(X)

Z◦
p (X′) JHp+1,p(X′).

AJ

φ∗ φ∗

AJ

Proof. Because the pushforward φ∗ : Zp → Zp(X′) commutes with the cycle class map,
we have an induced morphism φ∗ : Z◦

p → Z◦
p (X′). Suppose α ∈ Z◦

p (X) and let α′ =

φ∗(α). Let γ ∈ Cp,p+1(X) be a chain such that ∂γ = α. So γ′ = φ∗(γ) satisfies ∂(γ′) = α′.
By Theorem 2.3(4), we have that N(γ′) = φ∗(N(γ)) + ∂θ for some chain θ, and so Ψγ′ =

φ∗(Ψγ) as maps Zp+1,p(X′) → R. □

3.2. Rational functions and their divisors. Let Y be a connected tropical variety of di-
mension p + 1. A function f : Y0 → R is rational if there is a rational polyhedral structure
C on Y0 such that f is integral affine linear on each cell of C, and moreover for each
sedentarity type δ of codimension one, the slope along rays of C corresponding to this
sedentarity type are all the same; we denote this by slδ( f ). This definition is justified by
the way rational functions on algebraic varieties tropicalize. (Note that we do not assume
that the closures of the rational polytopes in C form rational polytopes of Y.)



TROPICAL ABEL–JACOBI THEORY 19

The divisor associated to a rational function was initially formulated in [Mik06], see
also [AR10] and [MR, § 4.4]. Given a polytope P ∈ C contained in Y0, denote by fP the
linear part of the restriction of f to P. For Q ∈ C with dim Q = p, define

ordQ( f ) = − ∑
P·≻Q

ωY(P) fP(nP/Q) + fQ

(
∑

P·≻Q
ωY(P)nP/Q

)
Let Z̊ f be the support of ordQ( f ),

Z̊ f =
⋃

Q∈C
ordQ( f ) ̸=0

Q,

and denote by Z f the closure of Z̊ f in Y. The function ord•( f ) defines a weight func-
tion ωZ f on the set of regular points of Z f . The connected components of Z̊ f endowed
with the restriction of ωZ f are connected tropical subvarieties of Y. We view Z f as an
element of Zp(Y) defined as the sum of these connected tropical subvarieties. If ordQ( f )
is everywhere 0, then Z f = 0. The divisor of f is the element of Zp(Y) given by

div( f ) = Z f + ∑
δ∈Sed Y

dim Yδ=p

slδ( f )Yδ.

The following proposition follows from [JRS18, Thm. 4.15], but we include a proof for the
sake of completeness.

Proposition 3.7. The fundamental class of div( f ) is a homologically trivial cycle.

Given a linear function f , the contraction by f is defined on elementary p-forms by

ι f (v0 ∧ · · · ∧ vp) =
p

∑
i=0

(−1)i+1 f (vi) v0 ∧ · · · ∧ v̂i ∧ · · · ∧ vp.

Proof of Proposition 3.7. The fundamental class of div( f ) is

[div( f )] = ∑
|Q|=p

[Q, ordQ( f )vQ].

Given a (p + 1)–dimensional polytope P ∈ C, let vP ∈ ∧p+1NP be the canonical multivec-
tor of P. Define

γ = ∑
P
[P, ωY(P) ι fPvP].

We claim that ∂γ = div( f ). Write

∂γ = ∑
Q

sgn(P, Q)[Q, (∂γ)Q] = ∑
Q

sgn(P, Q)ωY(P)[Q, ι fPvP].

Given a p-dimensional polytope Q ∈ C with Q ⊂ Y0, fix generators v1, . . . , vp ∈ NQ so
that vQ = v1 ∧ · · · ∧ vp and vP = sgn(P, Q)nP/Q ∧ vQ for each cell P ·≻ Q. By the Leibniz
rule, we have

ι fQ

[(
∑

P·≻Q
ωY(P)nP/Q

)
∧ vQ

]
= − fQ

(
∑

P·≻Q
ωY(P)nP/Q

)
vQ −

(
∑

P·≻Q
ωY(P)nP/Q

)
∧ ι fQvQ



20 OMID AMINI, DANIEL COREY, AND LEONID MONIN

The left hand side equals to zero by the balancing condition. Using this, we compute

(∂γ)Q = ∑
P·≻Q

ωY(P)ι fP(nP/Q ∧ vQ)

= − ∑
P·≻Q

(ωY(P) fP(nP/Q)vQ)−
(

∑
P·≻Q

ωY(P)nP/Q

)
∧ ι fQvQ

= − ∑
P·≻Q

(ωY(P) fP(nP/Q)vQ) + fQ

(
∑

P·≻Q
ωY(P)nP/Q

)
vQ

= ordQ( f )vQ

Now suppose sed(Q) = δ ̸= 0. Let P be the (p + 1)–dimensional polytope whose
boundary contains Q. Then ωYδ

(Q) = ωY(P) and ι fP(vP) = slδ( f )vQ where vQ is the
canonical multivector of Q ⊂ Yδ, as required. □

Let X be a d-dimensional connected tropical variety. Denote by Prinp(X) the subgroup
of Zp(X) generated by φ∗(div( f )) where Y is a connected tropical variety of dimension
p + 1, φ : Y → X is a tropical morphism, and f is a rational function on Y. By the functo-
riality of the cycle class map and the previous proposition, we have Prinp(X) ⊆ Z◦

p (X).
Define the Chow groups

Ap(X) := Zp(X)/Prinp(X) and A◦
p(X) := Z◦

p (X)/Prinp(X)

of cycles and homologically-trivial cycles on X modulo rational equivalence, respectively.

Remark 3.8. Consider connected tropical subvarieties (Y, ω1) and (Y, ω2) with the same
support Y. Then we have the relation (Y, ω1) + (Y, ω2) = (Y, ω1 + ω2) in Ap(X). Indeed,
we can write the difference of these two cycles as the pushforward of the divisor of a
rational function on a tropical variety of the form C × Y under the projection map to the
second factor, where C is a genus-0 tropical curve. ⋄
Proposition 3.9. If φ : X → X′ is a tropical morphism, then the push-forward φ∗ : Zp(X) →
Zp(X′) induces morphisms

φ∗ : Ap(X) → Ap(X′) and φ∗ : A◦
p(X) → A◦

p(X′).

Proof. Clearly we have φ∗(Prinp(X)) ⊆ Prinp(X′), which yields the first map. The second
one is a consequence of the functoriality of the cycle class map. □

Theorem 3.10. The Abel–Jacobi map vanishes on Prinp(X).

As a result, we view the Abel–Jacobi map as a morphism

AJ : A◦
p(X) → JHp+1,p(X).

Proof of Theorem 3.10. Let Y be a (p + 1)–dimensional tropical variety and φ : Y → X be a
tropical morphism. We show that AJ(div( f )) = 0 in JHp+1,p(Y) for any rational function
f on Y. From this we deduce that AJ(φ∗(div( f ))) = 0 in JHp+1,p(X) by functoriality of
the Abel–Jacobi map as in Proposition 3.6, and the theorem follows.

Using the notation in the paragraph preceding Proposition 3.7, we have AJ(div( f )) =
Ψγ where γ is the (p, p + 1)–chain from the proof of that proposition:

γ = ∑
P
[P, ωY(P) ι fPvP].
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Suppose Q ⊂ Y0. We write
N(γ) = ∑

Q
[Q, uQ].

By the Leibniz rule for ι fP and the fact that wP,Q is parallel to vP, we have

uQ = ∑
P·≻Q

ωY(P)wP,Q ∧ πP,Q(ι fPvP) =

{
−∑P·≻Q ωY(P) fP(oP − oQ)vP if sed(Q) = 0,
0 otherwise.

(See § 2.8 and § 2.11 for the definition of πP,Q and wP,Q, respectively. Furthermore, we
simplify our expressions by omitting the mention of ϕ appearing in the atlas of charts.)
We show that N(γ) = ∂ξ where

ξ = −∑
P

ωY(P)[P, fP(oP)vP].

Since vP is a (p+ 1)–multivector, we have that (∂ξ)Q = 0 when sed(Q) ̸= 0. For Q whose
sedentarity is 0, we have

(∂ξ)Q = − ∑
P·≻Q

ωY(P) fP(oP)vP = − ∑
P·≻Q

ωY(P) fP(oP − oQ + oQ)vP

= − ∑
P·≻Q

ωY(P) fP(oP − oQ)vP − ∑
P·≻Q

ωY(P) fP(oQ)vP.

Using fP(oQ) = fQ(oQ) and the balancing condition on Y, we have

∑
P·≻Q

ωY(P) fP(oQ)vP = fQ(oQ) ∑
P·≻Q

ωY(P)vP = fQ(oQ)(∂[Y])Q = 0.

Therefore, (∂ξ)Q = uQ for all Q, and so Ψγ ≡ 0, as required. □

Proof of Theorem 1.1. This theorem follows from Proposition 3.9 and Theorem 3.10. □

3.3. An obstruction to algebraic equivalence. Let X be a tropical variety. Recall from
the introduction that we set

Kp,q(X) = im(Np−q−1 : Hq+1,p−1(X, Z) → Hp,q(X, R))

and

Qp,q(X) =
Hp,q(X, R)

Kp,q(X)
.

The monodromy map N: Hp,q(X, R) → Hp+1,q−1(X, R) induces a map

N: JHp,q(X) → Qp+1,q−1(X).

We define an obstruction in Qp+2,p−1(X) to triviality under algebraic equivalence of trop-
ical cycles. Suppose Z1 and Z2 are connected tropical subvarieties of X. We write Z1 ∼ Z2
if there is a tropical curve B, two points b1, b2 ∈ B, and a subvariety W ⊂ X × B such that

(π1)∗[W ∩ (X × b1)− W ∩ (X × b2)] = Z1 − Z2

where π1 : X × B → X is the first projection and ∩ is stable intersection, see [MS15, § 3.6].
This induces a reflexive and symmetric on Zp(X). The transitive closure of this relation
is called algebraic equivalence, and cycles in the same equivalence class are called alge-
braically equivalent. By [Zha15, Lem. 6], algebraically equivalent cycles are homologically
equivalent.
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Theorem 3.11. If a p-cycle α is algebraically equivalent to 0, then

N(AJ(Z)) = 0 in Qp+2,p−1(X).

Proof. Let Z be an element of Z◦
p (X) representing α in the Chow ring. Because the basic

equivalences Z1 ∼ Z2 generates algebraic equivalence, we may assume, without loss of
generality, that Z = Z1 − Z2 for tropical subvarieties Z1, Z2, that B is a tropical curve, and
W ⊂ X × B is a (p + 1)–dimensional tropical variety that contains Z1 and Z2 as fibers.
By functorality of N and AJ as in Theorem 2.3 and Proposition 3.6, we have the following
commutative diagram:

Z◦
p (W) JHp+1,p(W) Qp+2,p−1(W)

Z◦
p (X × B) JHp+1,p(X × B) Qp+2,p−1(X × B)

Z◦
p (X) JHp+1,p(X) Qp+2,p−1(X).

AJ N

AJ N

AJ N

Viewing Z as a cycle in either W or X, we see that Z ∈ Z◦
p (X) is the image of Z ∈ Z◦

p (X)
under the composition of the vertical arrows on the left of the above diagram. Since
dim(W) = p + 1, we have Qp+2,p−1(W) = 0, and hence N(AJ(Z)) = 0. □

3.4. Tropical varieties with torsion Abel–Jacobi image. Motivated by questions on tor-
sion of the Ceresa class (see § 7.1), we derive a general criterion that ensures the image of
a homologically trivial cycle under the Abel–Jacobi map is torsion.

Theorem 3.12. Suppose X is a tropical variety that satisfies (WMP). Assume that the mon-
odromy N is rational. Then for any homologically trivial cycle in X, its Abel–Jacobi image is
torsion.

Proof. To prove the claim, note that the monodromy operator for Γ has rational coeffi-
cients. Suppose α is a homologically trivial p-cycle of X. By assumption, the monodromy
map N: Hp,p+1(X, Z) → Hp+1,p(X, R) takes values in Hp+1,p(X, Q). This implies the in-
clusion Lp+1,p(X) ⊆ Hp+1,p(X, Q). Since X satisfies (WMP), these two lattices have the
same rank, so we can find a positive integer n such that nHp+1,p(X, Z) ⊆ Lp+1,p(X). The
(p, p + 1)–chain γ which bounds α has integral coefficients, therefore Ψγ (as defined in
§ 3.1) belongs to Hp+1,p(X, Q). There exists a positive integer m such that mΨγ belongs
to Hp+1,p(X, Z). We conclude mnΨγ ∈ Lp+1,p(X). This proves that AJ(α) is torsion. □

3.5. Tropical Albanese. Let X be a d-dimensional Kähler tropical variety. The tropical
Albanese variety of X is

Alb(X) = JH1,0(X, R).

The Albanese Alb(X) is a compact torus with the integral affine structure given by the
lattice H1,0(X, Z).

Suppose that the Kähler class ω on X belongs to H1,1(X, Q) and the monodromy takes
values in rational tropical (co)homology. In this case, Alb(X) is endowed with a polar-
ization which makes it a tropical abelian variety, see § 2.13. This is given as follows.
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By the weight-monodromy property (WMP), and assumption on rationality of N, the
map

N: H1,0(X, Q) → H0,1(X, Q)

is an isomorphism (see [AP20] for a cohomological description of the monodromy map
N). By Hodge–Riemann property loc. cit. , the pairing

H1,0(X, Q)× H1,0(X, Q) → Q

α, β 7→ −deg(αN(β)ωd−1)

is positive definite. Using the duality between H1,0(X, Q) and H1,0(X, Q), this induces a
polarization on X. By fixing a base-point ♭ ∈ X, the Abel–Jacobi map specializes to

AJ : X → A◦
0(X) → Alb(X)

where the first map is x 7→ [x]− [♭]. The tropical Albanese variety satisfies the following
universal property.

Proposition 3.13. If A is a tropical abelian variety and X → A is a morphism, then there is a
unique morphism Alb(X) → A so that the following diagram commutes

X Alb(X)

A.

AJ

Proof. By functoriality of the Abel–Jacobi map in Theorem 1.1, we get a map Alb(X) →
Alb(A). By Proposition 4.1, we have that Alb(A) ∼= A. □

4. INTERMEDIATE JACOBIANS OF TROPICAL COMPACT TORI

In this section, let X = Rg/Zg with an integral affine structure given by a rank g lattice
L ⊂ Rg. Since X is a real compact torus, its tangent bundle is trivial, so the cosheaves Fp
and FZ

p are isomorphic to the constant cosheaves ∧pRg and ∧pL, respectively. Moreover,
H1(X, Z) is canonically isomorphic to Zg. We therefore have isomorphisms

(4.1)
Hp,q(X, Z) = Hq(X, FZ

p )
∼= ∧qZg ⊗Z ∧pL,

Hp,q(X, R) = Hq(X, Fp) ∼= ∧qRg ⊗∧pRg.

Define the linear map

φ : ∧q Zg ⊗Z ∧pL → ∧q−1Zg ⊗Z Zg ∧ (∧pL) ⊂ ∧q−1Rg ⊗∧p+1Rg,

u1 ∧ · · · ∧ uq ⊗ v 7→
q

∑
k=1

(−1)ku1 ∧ · · · ∧ ûk ∧ · · · ∧ uq ⊗ uk ∧ v.

Proposition 4.1. The following diagram commutes

Hp,q(X, Z) Hp+1,q−1(X, R)

∧qZg ⊗Z ∧pL ∧q−1Rg ⊗∧p+1Rg.

N

φ
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In this case, the tropical intermediate Jacobian of the tropical compact torus X is given by

JHp,q(X) ∼=
∧qRg ⊗∧pRg

im(φq−p : ∧p Zg ⊗∧qL → ∧qRg ⊗∧pRg)
.

Proof. Denote by e1, . . . , eg the standard basis of Zg. A fundamental domain in the uni-
versal cover π : Rg → X of the tropical compact torus X is [0, 1]g. We give X a cubical
complex structure with 2g maximal cells by taking the barycentric subdivision of each
copy of [0, 1] and forming the induced subdivision on the product [0, 1]g, see Figure 4.1.
Let I0 = [0, 1

2 ] and I1 = [ 1
2 , 1]. The cells of this cubical complex are in bijection with the

set of functions
f : {1, . . . , g} → {0, 1

2 , 1, I0, I1}
where the cell corresponding to the function f is

Pf = π(P̃f ) ⊂ X, where P̃f =
g

∏
k=1

f (k) ⊂ [0, 1]g.

Because π|P̃f
is an isomorphism to its image, we identify P̃f with Pf . Denote by o f the

barycenter of Pf . We write h≺· f if Ph is a codimension one face of Pf . When h≺· f , there is
a unique d ∈ {1, . . . , g} such that f (d) is an interval and h(d) is a vertex of f (d). So o f − oh

equals 1
4ed or − 1

4ed if h(d) is larger or smaller than the barycenter of f (d), respectively.
We denote this d by d f ,h. The monodromy operator on chains is given by

N([Pf , v]) = ∑
h≺· f

sgn( f , h)[Ph, (o f − oh) ∧ v]

where sgn( f , h) = sgn(Pf , Ph) is the sign function in § 2.8. We consider the case q = g,
the proof is similar for q < g. Let Πg denote the set of functions corresponding to the
g-dimensional cells of X; these are exactly the functions f : {1, . . . , g} → {I0, I1}. So

Hp,g(X, Z) =

[ ∑
f∈Πg

Pf , v]
∣∣ v ∈ ∧pL

 .

Under the identification in Equation (4.1), the element of Hp,g(X, Z) given by

[ ∑
f∈Πg

Pf , v] corresponds to e1 ∧ · · · ∧ eg ⊗Z v.

Then, we compute

N([ ∑
f∈Πg

Pf , v]) = ∑
f∈Πg

∑
h≺· f

sgn( f , h)[Ph, (o f − oh) ∧ v]

=
g

∑
k=1

 ∑
f∈Πg

∑
h:d f ,h=k

sgn( f , h)[Ph, (o f − oh) ∧ v]

 .

We claim that

∑
f∈Πg

∑
h:d f ,h=k

sgn( f , h)[Ph, (o f − oh) ∧ v] 7→ (−1)ke1 ∧ · · · ∧ êk ∧ · · · ∧ eg ⊗ ei ∧ v
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FIGURE 4.1. An illustration of the proof of Proposition 4.1

via the isomorphism in Equation (4.1). We prove this for k = 1. Then, the sum on the left
is

(4.2) ∑
f∈Πg

f (1)=I0

∑
h:d f ,h=1

sgn( f , h)[Ph, (o f − oh) ∧ v] + ∑
f∈Πg

f (1)=I1

∑
h:d f ,h=1

sgn( f , h)[Ph, (o f − oh) ∧ v].

Consider the sum on the left, i.e., assume that f (1) = I0. Then h(1) is either 0 or 1
2 . In

the former case, we have sgn( f , h) = −1 and o f − oh =
1
4e1 and in the latter case we have

sgn( f , h) = 1 and o f − oh = − 1
4e1. So the sum on the left equals

∑
h∈Πg−1
h(1)=0

−[Ph, 1
4e1 ∧ v] + ∑

h∈Πg−1
h(1)=1/2

[Ph,− 1
4e1 ∧ v] = − 1

4 ∑
h∈Πg−1
h(1)=0

[Ph, e1 ∧ v]− 1
4 ∑

h∈Πg−1
h(1)=1/2

[Ph, e1 ∧ v].

The two sums on the right are (p + 1, g − 1)–cycles that are homologous to each other.
Under the identification in Equation (4.1), these cycles correspond to

− 1
4e2 ∧ e3 ∧ · · · ∧ eg ⊗Z e1 ∧ v ∈ ∧g−1Zg ⊗Z Zg ∧ (∧pL).

In a similar way, the second double summation in (4.2) also equals to two (p + 1, g − 1)–
cycles, each corresponding to the above element in ∧g−1Zg ⊗Z Zg ∧ (∧pL). This proves
the claim for k = 1, and the proof of the claim for k ≥ 2 is similar. In total, we get that
N([∑ f∈Πg Pf , v]) corresponds to

g

∑
k=1

(−1)ke1 ∧ · · · ∧ êk ∧ · · · ∧ eg ⊗Z ek ∧ v = φ(e1 ∧ · · · ∧ eg ⊗Z v),

as required. □

5. CURVES AND THEIR JACOBIANS

Let Γ be a connected genus-g tropical curve. Fix a model (G, ℓ) with G = (V, E) and
an orientation on the edges of G. We suppose that G has no separating edges. Denote
by Div0(Γ) the group of degree-0 divisors on Γ. Note that Div0(Γ) is exactly the group
Z◦

0 (Γ) of homologically trivial 0-cycles on Γ.

Theorem 5.1. The tropical intermediate Jacobian JH1,0(Γ) of Γ is canonically identified with the
Jacobian Jac(Γ) of Γ:

Jac(Γ) ∼= JH1,0(Γ).
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Furthermore, we have the following commutative diagram:

Div0(Γ) Jac(Γ)

Div0(Γ) JH1,0(Γ).

AJ

= ∼=
AJ

In the above commutative diagram, the top AJ is the tropical Abel–Jacobi map as defined
in [MZ08, BF11, BN07], whereas the bottom AJ is the Abel–Jacobi map defined in § 3.

We begin by recalling the definition of the Jacobian Jac(Γ). With Γ understood, we
write HZ = H1(Γ, Z) and H = HZ ⊗ R. Denote by ΩZ = ΩZ(Γ) the space of integral
harmonic 1-forms on Γ, and Ω = ΩZ ⊗ R. Given any path γ in Γ, define

(5.1) Iγ ∈ Ω∨ ω 7→ Iγ(ω) :=
∫

γ
ω.

Under the embedding
I : HZ ↪→ Ω∨ γ 7→ Iγ,

HZ is realized as a full-rank lattice inside Ω∨. The Jacobian of Γ is the compact real torus

Jac(Γ) :=
Ω∨

HZ

.

The tropical curve Γ has an intrinsic tropical structure making it into a Kähler tropical
variety of dimension 1. Each point ♭ ∈ Γ of valence d has a neighborhood identified with
a neighborhood of 0 in the 1-skeleton of the fan of the projective space Pd−1. The Abel–
Jacobi map gives an embedding of Γ into Jac(Γ) as a tropical subvariety (we use that G
has no separating edges).

The tropical structure of Γ may be described in the following way. Fix an orientation
for the edges of Γ. The tangent space at each point of Jac(Γ) is naturally identified with
Ω∨, and its integral affine structure is given by ΩZ ⊂ Ω. Given an edge e, denote by se
its source vertex and te its target vertex. We have:

FZ

0 (e) = Z, FZ

1 (e) = Z · 1e = Z · Ie

ℓ(e)
⊂ Ω∨

Z

where 1e is the unit tangent vector to e with respect to the orientation of e. Given a vertex
v ∈ V, we have

FZ

0 (v) = Z, FZ

1 (v) = (
⊕
e·≻v

FZ

1 (e))
/
⟨∑

e·≻v
sgn(e, v) 1e⟩ ⊂ Ω∨

Z .

Here, sgn(e, v) = 1 if v = se and sgn(e, v) = −1 if v = te. Using this description, we
have:

(5.2) H0,1(Γ, Z) = HZ, H1,0(Γ, Z) = Ω∨
Z , H0,1(Γ, R) = H, H1,0(Γ, R) = Ω∨.

The monodromy operator is defined at level of chains N: C0,1(Γ, Z) → C1,0(Γ, R) in the
following way. Given an edge e, let oe be the midpoint of e, and ov = v for each vertex v.
Then,

(5.3) N([e, 1]) = ∑
v≺·e

sgn(e, v) [v, (oe − ov)] =
1
2 ([se, Ie] + [te, Ie]) ≡ Ie mod B1,0(Γ, R).

Proposition 5.2. Under the identifications in (5.2), we have the identification N = I.
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Proof. Under the identification H ∼= H0,1, the cycle ∑ nee in H corresponds to ∑ ne[e, 1e]
in H0,1; we denote both by γ. We have

N(γ) = ∑
e

neN([e, 1e]) = ∑
e

neIe = I∑e nee = Iγ. □

Proof of Theorem 5.1. The canonical identification Jac(Γ) ∼= JH1,0(Γ) is a direct consequence
of Proposition 5.2. Consider the 0-cycle ♭− ♭ for ♭, ♭∈ Γ. Let η be an oriented path in Γ
with ∂η = ♭− ♭. The top Abel–Jacobi map sends ♭− ♭ to the linear form ⟨Iη ,−⟩ on Ω.
The bottom Abel–Jacobi map sends ♭− ♭ to the linear form ⟨N(η),−⟩ on H1,0(Γ), which
can be identified with Ω by duality and the identification H1,0

∼= Ω∨. These two forms
agree under the identification in Equation (5.3). □

Fixing a basis of HZ = H1(Γ, Z) yields isomorphisms Ω∨ ∼= Rg and HZ
∼= Zg. Define

(5.4) QΓ : Ω∨ × Ω∨ → R; QΓ

(
∑
e∈E

xeIe, ∑
e∈E

yeIe

)
= ∑

e∈E
ℓ(e)xeye

which is a symmetric, positive-definite, bilinear form on Ω∨. So Jac(Γ) is identified with
the tropical abelian variety Rg/Zg whose polarization is given by the pairing in Equation
(5.4). The lattice L dual to H ∼= Zg is identified with Ω∨

Z . The intermediate Jacobian of
Jac(Γ) is therefore given by Proposition 4.1.

6. THE TROPICAL CERESA CLASS

Let Γ be a connected genus g ≥ 2 tropical curve. Corresponding to a point ♭ ∈ Γ are
two maps:

Γ → Div0(Γ) x 7→ [x]− [♭] and [♭]− [x].
Composing with the tropical Abel–Jacobi map Div0(Γ) → Jac(Γ) produces two maps
Γ → Jac(Γ). Denote the image of Γ under these two maps by Γ♭ and Γ−

♭
, respectively. As

these maps contract all separating edges, we may assume Γ has no separating edges. The
tropical Ceresa cycle ν♭(Γ) ∈ Z1(Jac(Γ)) is the 1-cycle

ν♭(Γ) = [Γ♭]− [Γ−
♭
].

We prove below that ν♭(Γ) is nullhomologous and we produce an explicit bounding
(1, 2)–chain. Another (1, 2)–chain may be found in [Rit24, Eq. 17]. We define the tropical
Ceresa class of Γ based at ♭ to be

v♭(Γ) = AJ(ν♭(Γ)) ∈ JH2,1(Jac(Γ)).

6.1. An explicit bounding chain for the Ceresa cycle. Fix a model (G, ℓ) of Γ with G =
(V, E). Fix a point ♭ ∈ V and fix an orientation of each edge. Let T = (V, F) be a spanning
tree of G. Choose points D = {vε

∣∣ ε ∈ Fc} such that vε lies in the relative interior of the
edge ε. Denote by π : Rg → Jac(Γ) the universal covering space for Jac(Γ). We may
assume that π(0) = ♭ where 0 ∈ Rg is the origin. Let S be the closure of a connected
component of π−1(Γ \ D). The map π : S → Γ is one-to-one except over the points in D
where the fiber over each of these points has size 2; set π−1(vε) = {xε, yε}. See Figure 6.1
for a genus 2 example.

The model (G, ℓ) induces a model on S. The underlying graph is GS = (VS, ES), where
VS = V ∪ {xε, yε

∣∣ ε ∈ Fc} and ES consists of the edges in F, and 2g edges obtained by
splitting ε at vε. The orientations of the edges in E induce orientations on the edges in ES.
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FIGURE 6.1. A genus 2 tropical curve Γ and the trees S and S′ in the uni-
versal cover of Jac(Γ)

Assume that xε has its adjacent edge oriented away from it and yε has its adjacent edge
oriented towards it.

For an oriented edge e, denote by se and te the source and target vertex of e, respec-
tively. Let be ∈ H1,0(Jac(Γ), R) the unit vector in the direction te − se. Under the iso-
morphism H1,0(Jac(Γ)) ∼= Ω∨ in Formula (5.1), be corresponds to Ie/ℓ(e). Given points
a1, . . . , ak ∈ Rg, denote by Ja1, . . . , akK the image under π of the (singular) simplex formed
by these points. The cycle class of Γ♭ is represented by

Y(Γ♭) := ∑
e∈ES

[
Jse, teK, be

]
∈ C1,1(Jac(Γ), Z).

Define the (1, 1) and (1, 2)–chains

Z(Γ♭) = ∑
ε∈Fc

[
Jxε, yεK, bε

]
and η(Γ♭) = ∑

e∈ES

[
J0, se, teK, be

]
− ∑

ε∈Fc

[
J0, xε, yεK, bε

]
.

Proposition 6.1. The cycle Y(Γ♭) is homologous to Z(Γ♭) and

Y(Γ♭)− Z(Γ♭) = ∂η(Γ♭).

The following Lemma is a consequence of [MZ08, Lem. 6.3].

Lemma 6.2. Given for any v ∈ V, we have

∑
se=v

be − ∑
te=v

be = 0.

Proof of Proposition 6.1. First we compute

∂
[
J0, se, teK, be

]
=
[
Jse, teK− J0, teK+ J0, seK, be

]
,

∂
[
J0, xε, yεK, bε

]
=
[
Jxε, yεK− J0, yεK+ J0, xεK, bε

]
.
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Let L = {xε, yε

∣∣ ε ∈ Fc} ⊂ VS. By Lemma 6.2,

∂

(
∑

e∈ES

[
J0, se, teK, be

])
= Y(Γ♭) + ∑

v∈VS\L

[
J0, vK,

(
∑

se=v
be − ∑

te=v
be

)]

+ ∑
ε∈Fc

[
J0, xεK− J0, yεK, bε

]
= Y(Γ♭) + ∑

ε∈Fc

[
J0, xεK− J0, yεK, bε

]
.

Finally, we have

∂

(
∑

ε∈Fc

[
J0, xε, yεK, bε

])
= ∑

ε∈Fc

[
Jxε, yεK, bε

]
+ ∑

ε∈Fc

[
−J0, yεK+ J0, xεK, bε

]
= Z(Γ♭) + ∑

ε∈Fc

[
−J0, yεK+ J0, xεK, bε

]
.

from which the proposition follows. □

The cycle class of Γ−
♭

is represented by the chain

Y(Γ−
♭
) = ∑

e∈ES

[
J−se,−teK,−be

]
∈ C1,1(Jac(Γ), Z).

Similar to Proposition 6.1, Y(Γ−
♭
) is homologous to Z(Γ−

♭
) where

Z(Γ−
♭
) = ∑

ε∈Fc

[
J−xε,−yεK,−bε

]
.

In fact, Y(Γ−
♭
)− Z(Γ−

♭
) = ∂(η(Γ−

♭
)) where

η(Γ−
♭
) = ∑

e∈ES

[
J0,−se,−teK,−be

]
− ∑

ε∈Fc

[
J0,−xε,−yεK,−bε

]
.

So

∂(η(Γ♭)− η(Γ−
♭
)) = Y(Γ♭)− Y(Γ−

♭
)− (Z(Γ♭)− Z(Γ−

♭
)).

We must find a bounding chain for the nullhomologous cycle Z(Γ♭)− Z(Γ−
♭
). Denote by

ρ(a, b, c, d) the image under π of the rectangle with vertices a, b, c, d ∈ Rg in counterclock-
wise order. We have that

λ♭(Γ) = ∑
ε∈Fc

[ρ(xε, yε,−xε,−yε), bε] satisfies ∂(λ♭(Γ)) = Z(Γ♭)− Z(Γ−
♭
).

This discussion yields the following theorem.

Theorem 6.3. A chain ξ♭(Γ) ∈ C1,2(Jac(Γ), Z) such that ∂ξ♭(Γ) = Y(Γ♭)− Y(Γ−
♭
) is given

by

ξ♭(Γ) = η(Γ♭)− η(Γ−
♭
) + λ♭(Γ).
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FIGURE 6.2. The values of sgn♭
T(e, ε) are, left to right: 2, −2, 1, −1, 0.

Using the bounding chain ξ♭(Γ) above, we derive a useful and explicit description of the
Ceresa class v♭(Γ). For e ∈ F and ε ∈ Fc, we define the sign function sgn♭

T(e, ε) in terms
of the paths in T from ♭ to sε or tε passing through e. Specifically,

sgn♭
T(e, ε) =



2 if e is on the path from ♭ to both sε and tε, oriented away from ♭,
1 if e is on the path from ♭ to one of sε or tε, oriented away from ♭,
0 if e is not on the path from ♭ to either sε or tε,
−1 if e is on the path from ♭ to one of sε or tε, oriented towards ♭,
−2 if e is on the path from ♭ to both sε and tε, oriented towards ♭.

See Figure 6.2. The cycles Jxε, yεK and J−yε,−xεK define the same class in H1(Jac(Γ), Z);
we denote this class by aε. Under the isomorphism H1(Jac(Γ), Z) ∼= H1(Γ, Z), the cycle
aε corresponds to the homology class of the fundamental cycle contained in T ∪ ε.

Theorem 6.4. Given a tropical curve Γ with model (G = (V, E), ℓ), a point ♭ ∈ V, and spanning
tree T = (V, F), the tropical Ceresa class v♭(Γ) is given by

v♭(Γ) = ∑
e∈F
ε∈Fc

sgn♭
T(e, ε) ℓ(e) aε ⊗ (bε ∧ be).

We use the description of JH2,1(Jac(Γ)) given in Proposition 4.1.

Proof of Theorem 6.4. By Proposition 3.5, v♭(Γ) only depends on the bounding chain of
a representative of cl(ν♭(Γ)) up to B2,1(Jac(Γ)). A the chain ξ♭(Γ) bounds cl(ν♭(Γ)) by
Theorem 6.3. To compute N(ξ♭(Γ)), we must fix points oP for each codimension zero and
one cell P. With

σe = J0, se, teK, σ′
e = J0,−se,−teK, τε = J0, xε, yεK, τ′

ε = J0,−xε,−yεK,

ρε = ρ(xε, yε,−xε,−yε),

set

oσe = te, oσ′
e
= −te, oτε = yε, oτ′

ε
= −yε, oρε = yε,

oJ0,vK = v, oJ±xε,±yεK = ±yε, oJyε,−xεK = yε, oJ−yε,xεK = xε.

Using this, we compute

N ([σe, be]) = 0, N ([σ′
e,−be]) = 0,

N ([τε, bε]) =
[
J0, xεK, aε ∧ bε

]
, N ([τ′

ε ,−bε]) =
[
J0,−xεK, aε ∧ bε

]
,

N([ρε, bε]) =
[
J−xε,−yεK, (2yε − 0) ∧ bε

]
+
[
J−yε, xεK, aε ∧ bε

]
.
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Then,

N(η(Γ♭)− η(Γ−
♭
)) = ∑

ε∈Fc

[
−J0, xεK+ J0,−xεK, aε ∧ bε

]
≡ ∑

ε∈Fc

[
Jxε,−xεK, aε ∧ bε

]
mod B2,1(Jac(Γ)).

Altogether, we have

N(ξ♭(Γ)) ≡ ∑
ε∈Fc

([
Jxε,−xεK, aε ∧ bε

]
+
[
J−xε,−yεK, (2yε − 0) ∧ bε

]
+
[
J−yε, xεK, aε ∧ bε

])
mod B2,1(Jac(Γ)).

As Jxε,−xεK + J−yε, xεK ≡ J−yε,−xεK modulo B0,1(Jac(Γ)), we may combine the three
terms in the above sum to get

N(ξ♭(Γ)) ≡ ∑
ε∈Fc

[
J−yε,−xεK, (aε − 2yε) ∧ bε

]
≡ ∑

ε∈Fc

[
aε, (−yε − xε) ∧ bε

]
.

Because
−yε − xε = (−yε − 0)− (xε − 0) = −(yε − 0)− (xε − 0),

we have that
v♭(Γ) = ∑

ε∈Fc
[aε, bε ∧ (xε − 0) + bε ∧ (yε − 0)].

Let Aε, respectively Bε, be the edges in F contained in the unique path in S from 0 to xε,
respectively from 0 to yε. For e ∈ Aε, let αe ∈ {±1} be 1 if e is oriented away from ♭ and
−1 if e is oriented towards ♭. Define βe ∈ {±1} for e ∈ Bε similarly. Then,

(xε − ♭) = kbε + ∑
e∈Aε

αe ℓ(e)be, (yε − ♭) = (ℓ(ε)− k)bε + ∑
e∈Bε

βe ℓ(e)be

for some 0 ≤ k ≤ ℓ(ε). The theorem now follows from the description of JH2,1(Jac(Γ)) as
in Proposition 4.1. □

6.2. Dependence on the basepoint. Given two points ♭, ♭∈ Γ, we consider the difference
between v♭(Γ) and v ♭(Γ). Fix a basis of cycles a1, . . . , ag of HZ ⊂ Ω∨, and let b1, . . . , bg ∈
Ω∨

Z be a dual basis with respect to Q (so Q(ai, bj) = δij). Define the homology class

(6.1) ω = [a1, b1] + · · ·+ [ag, bg] ∈ H1,1(Jac(Γ)).

Proposition 6.5. The homology class ω ∈ H1,1(Jac(Γ)) is independent of basis. Furthermore,

ω = cl(Γ♭).

Proof. Suppose a′1, . . . , a′g, b′1, . . . , b′g is another pair of dual bases. There is linear auto-
morphism C : HZ → HZ such that Cai = a′i. Then b′i = C−Tbi where CT : Ω∨ → Ω∨

is the unique linear automorphism such that Q(Cx, y) = Q(x, CTy). Say C = [cij] and
C−T = [dij]. Then

g

∑
i=1

[a′i, b
′
i] =

g

∑
i=1

[Cai, C−Tbi] =
g

∑
i=1

∑
k,ℓ
[cikak, diℓbℓ] = ∑

k,ℓ
[ak, bℓ]

g

∑
i=1

cikdiℓ

= ∑
k,ℓ
[ak, bℓ](CTC−T)kℓ = ∑

k,ℓ
[ak, bℓ]δkℓ = ω.
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The last statement follows from this and Proposition 6.1. □

Theorem 6.6. We have
v♭(Γ)− v ♭(Γ) = −2AJ(♭− ♭) ∧ ω.

Proof. This theorem may be deduced from Theorem 6.4, but we provide a more direct
proof here. First, consider the nullhomologous cycle Γ♭ − Γ ♭. Representatives of cl(Γ♭)
and cl(Γ ♭) are given by

Y(Γ♭) = ∑
e∈E

[
Jse, teK, be

]
and Y(Γ ♭) = ∑

e∈E

[
Jse + ♭, te + ♭K, be

]
,

respectively. The (2, 1)–chain

η = ∑
e∈E

[ηe, be] where ηe = ρ(se, te, te + ♭, se + ♭)

satisfies ∂η = Y(Γ♭)− Y(Γ ♭). For each vertex v ∈ V and edge e ∈ E set

oJv,v+ ♭K = v + ♭, oJse,teK = te, oJse+ ♭,te+ ♭K = te + ♭, oηe = te + ♭.

Then,

N(ηe) = [Jse, teK, ( ♭− ♭) ∧ be]− [Jse, se + ♭K, ℓ(e)be ∧ be] = [Jse, teK, ( ♭− ♭) ∧ be],

and so
N(η) = ∑

e∈E
[Jse, teK, ( ♭− ♭) ∧ be] = AJ( ♭− ♭) ∧ Y(Γ♭).

Since Y(Γ♭) and ω are homologous, we have

AJ(Γ♭ − Γ ♭) = −AJ(♭− ♭) ∧ ω.

Similarly,
AJ(Γ−

♭
− Γ−

♭
) = AJ(♭− ♭) ∧ ω,

and therefore

v♭(Γ)− v ♭(Γ) = AJ(Γ♭ − Γ ♭)− AJ(Γ−
♭
− Γ−

♭
) = −2AJ(♭− ♭) ∧ ω

from which the theorem follows. □

6.3. The unpointed Ceresa class. With Theorem 6.6 in mind, we make the following
definition.

Definition 6.7. Define

JHp+1,p(Jac(Γ)) =
Hp+1,p(Jac(Γ), R)

ω ∧ Hp,p−1(Jac(Γ), R) + Lp+1,p(Jac(Γ))
.

The unpointed Ceresa class v(Γ) is the image of v♭(Γ) in JH2,1(X). ⋄

By Theorem 6.6, the class v♭(Γ) is independent of ♭.
Next, we derive a new formula for v(Γ). Suppose (G, ℓ) is a model of Γ with G =

(V, E), fix an orientation of each edge, and let T = (V, F) be a spanning tree of G. Given
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FIGURE 6.3. The values of sgnT(e, ε) are, left to right: 1, −1, 0

ε ∈ Fc, there is a unique cycle contained in T ∪ ε; call this cycle γT(ε). Given e ∈ F and
ε ∈ Fc, define

sgnT(e, ε) =


1 if e /∈ γT(ε) and e points towards ε,
−1 if e /∈ γT(ε) and e points away from ε,
0 if e ∈ γT(ε).

Theorem 6.8. Given a tropical curve Γ with model (G = (V, E), ℓ) and spanning tree T =
(V, F), its unpointed tropical Ceresa class is

v(Γ) = ∑
e∈F
ε∈Fc

sgnT(e, ε) ℓ(e) aε ⊗ (bε ∧ be) in JH2,1(Jac(Γ)).

Proof. Fix a basepoint ♭ ∈ V. Given e ∈ F and ε ∈ Fc, a case-by-case analysis yields

sgn♭
T(e, ε)− sgnT(e, ε) =

{
1 if e points away from ♭ in T,
−1 if e points towards ♭ in T.

In particular, this expression is independent of ε ∈ Fc; call it αe. Using Theorem 6.4, we
have

v♭(Γ)− ∑
e∈F
ε∈Fc

sgnT(e, ε) ℓ(e) aε ⊗ (bε ∧ be) = ω ∧ ∑
e∈F

ℓ(e)αe be,

as required. □

6.4. The Ceresa–Zharkov class and algebraic equivalence. Given a tropical curve Γ and
a point ♭ ∈ Γ, define the class w(Γ) in Q3,0(Jac(Γ)) by

w(Γ) = N(v♭(Γ)) ∈ Q3,0(Jac(Γ)).

By Theorem 3.11, if w(Γ) ̸= 0 in Q3,0(Jac(Γ)), then the tropical Ceresa cycle ν♭(Γ) is not
algebraically equivalent to 0. We expect that this recovers [Rit24, Prop. 1.1]. Using the
results from Appendix A, we see that this class generalizes the Ceresa–Zharkov class of a
tropical curve as defined in [CL24] to curves with arbitrary edge-lengths.

Theorems 6.4 and 6.8 give efficient ways of calculating the Ceresa class of a tropical
curve. We illustrate this with two examples, the complete graph on 4 vertices K4 and the
trivalent loop of 3 loops TL3.
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FIGURE 6.4. A genus 3 tropical curve whose underlying graph is K4, and
a genus 4 tropical curve whose underlying graph is TL3

6.5. The complete graph on 4 vertices K4. Suppose Γ is the tropical curve whose under-
lying graph is K4, the left-hand graph in Figure 6.4. For each edge ei, denote by ℓi = ℓ(ei)
and bi = bei . Let T be the spanning tree formed by the edges e4, e5, e6. The vectors b1, b2, b3
form a basis of H1,0(Γ, Z), and we have

b4 = b3 − b2, b5 = b1 − b3, b6 = b2 − b1.

For i = 1, 2, 3, let ai = aei . The matrix QΓ with respect to the basis a1, a2, a3 (i.e., the matrix
whose (i, j)–th entry is QΓ(ai, aj)) is given by

QΓ =

ℓ1 + ℓ5 + ℓ6 −ℓ6 −ℓ5
−ℓ6 ℓ2 + ℓ4 + ℓ6 −ℓ4
−ℓ5 −ℓ4 ℓ3 + ℓ4 + ℓ5

 .

The columns of this matrix describe the coefficients of ai with respect to the basis b1, b2, b3.
Explicitly:

a1 = ℓ1b1 + ℓ5b5 − ℓ6b6 = (ℓ1 + ℓ5 + ℓ6)b1 − ℓ6b2 − ℓ5b3,

a2 = ℓ2b2 − ℓ4b4 + ℓ6b6 = −ℓ6b1 + (ℓ2 + ℓ4 + ℓ6)b2 − ℓ4b3,

a3 = ℓ3b3 + ℓ4b4 − ℓ5b5 = −ℓ5b1 − ℓ4b2 + (ℓ3 + ℓ4 + ℓ5)b3.

This description gives a practical way to compute the monodromy map on the Jacobian
via Proposition 4.1. Indeed, we have that L2,1(Jac(Γ)) is generated by the forms

N((ai ∧ aj)⊗ bk) = ai ⊗ aj ∧ bk − aj ⊗ ai ∧ bk

for 1 ≤ i < j ≤ 3 and 1 ≤ k ≤ 3, which can be expressed in the basis

ai ⊗ (bj ∧ bk) for 1 ≤ i ≤ 3, 1 ≤ j < k ≤ 3

of R3 ⊗ ∧2R3 using the descriptions of ai and bj above. Using Theorem 6.4 we compute
the pointed Ceresa class to be

v♭(Γ) = ℓ4(a2 ⊗ (b2 ∧ b4) + a3 ⊗ (b3 ∧ b4))
+ ℓ5(a1 ⊗ (b1 ∧ b5) + a3 ⊗ (b3 ∧ b5))
+ ℓ6(a1 ⊗ (b1 ∧ b6) + a2 ⊗ (b2 ∧ b6)).

(6.2)
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The formula in Theorem 6.8 yields the same representative for v(Γ). We compute in
JH2,1(Jac(Γ))

v(Γ) = v♭(Γ)− ω ∧ (ℓ4b4 + ℓ5b5 + ℓ6b6) + N([a1 ∧ a2, b1])

= ℓ2a1 ⊗ (b1 ∧ b2)− ℓ5(a2 ⊗ (b1 ∧ b2) + a2 ⊗ (b2 ∧ b3)− a2 ⊗ (b1 ∧ b3)),

which recovers the computation in [CEL24, Ex. 7.2]. Finally, we compute Q3,0(Jac(Γ))
and the class w(Γ) in Q3,0(Jac(Γ)). The subgroup K3,0(Jac(Γ)) of ∧3R3 ∼= R is generated
by

N2((ai ∧ aj)⊗ bk) = 2 ai ∧ aj ∧ bk

for 1 ≤ i < j ≤ 3 and 1 ≤ k ≤ 3, and

w(Γ) = −(ℓ5ℓ6 + ℓ4ℓ6 + ℓ4ℓ5) b1 ∧ b2 ∧ b3 = ℓ1ℓ4 b1 ∧ b2 ∧ b3 in Q3,0(Jac(Γ)).

This recovers the computation in [CL24, Rit24, Zha15].

6.6. The trivalent loop of 3 loops TL3. Suppose Γ is the tropical curve whose underlying
graph is TL3, the right-hand graph in Figure 6.4. As in the K4 example, for each edge ei,
denote by ℓi = ℓ(ei) and bi = bei . Let T be the spanning tree formed by the edges e5, e6,
e7, e8, e9. Then b1, b2, b3, b4 forms a basis of H1,0(Γ, R) and we have

b5 = −b2 + b3 + b4, b6 = −b1 + b3 + b4, b7 = b8 = b9 = b3 + b4.

For i = 1, 2, 3, 4, let ai = aei , which forms a basis of H0,1(Γ). The matrix QΓ with respect
to this basis is given by

QΓ =


ℓ1 + ℓ6 0 −ℓ6 −ℓ6

0 ℓ2 + ℓ5 −ℓ5 −ℓ5
−ℓ6 −ℓ5 ℓ3 + ℓ5 + ℓ6 + ℓ7 + ℓ8 + ℓ9 ℓ5 + ℓ6 + ℓ7 + ℓ8 + ℓ9
−ℓ6 −ℓ5 ℓ5 + ℓ6 + ℓ7 + ℓ8 + ℓ9 ℓ4 + ℓ5 + ℓ6 + ℓ7 + ℓ8 + ℓ9

 .

Using Theorem 6.4 we compute the pointed Ceresa class v♭(Γ) in JH2,1(Jac(Γ)) to be

v♭(Γ) = ℓ5(a1 ⊗ (b1 ∧ b5) + a3 ⊗ (b3 ∧ b5) + a4 ⊗ (b4 ∧ b5))

+ ℓ6(a1 ⊗ (b1 ∧ b6) + 2a2 ⊗ (b2 ∧ b6) + a3 ⊗ (b3 ∧ b6) + a4 ⊗ (b4 ∧ b6))

+ ℓ7(2a1 ⊗ (b1 ∧ b7) + 2a2 ⊗ (b2 ∧ b7) + a3 ⊗ (b3 ∧ b7) + a4 ⊗ (b4 ∧ b7))

+ ℓ8(2a2 ⊗ (b2 ∧ b8) + a3 ⊗ (b3 ∧ b8) + a4 ⊗ (b4 ∧ b8))

+ ℓ9(a3 ⊗ (b3 ∧ b9) + a4 ⊗ (b4 ∧ b9)).

The formula for v(Γ) in JH2,1(Jac(Γ)) from Theorem 6.8 yields

v(Γ) =− ℓ5a1 ⊗ (b1 ∧ b5) + ℓ6a2 ⊗ (b2 ∧ b6)− ℓ7(a1 ⊗ (b1 ∧ b7) + a2 ⊗ (b2 ∧ b7))

+ ℓ8(a1 ⊗ (b1 ∧ b8)− a2 ⊗ (b2 ∧ b8)) + ℓ9(a1 ⊗ (b1 ∧ b9) + a2 ⊗ (b2 ∧ b9)).

This recovers the calculation in [CEL24, Ex. 7.6]. The class w(Γ) in Q3,0(Jac(Γ)) is repre-
sented by

w(Γ) = ℓ5ℓ6 b1 ∧ b5 ∧ b6 − ℓ5ℓ6 b2 ∧ b5 ∧ b6 − ℓ6ℓ7 b1 ∧ b6 ∧ b7 − ℓ5ℓ7 b2 ∧ b5 ∧ b7

+ ℓ6ℓ8 b1 ∧ b6 ∧ b8 − ℓ5ℓ8 b2 ∧ b5 ∧ b8 + ℓ6ℓ9 b1 ∧ b6 ∧ b7 + ℓ5ℓ9 b2 ∧ b5 ∧ b9

= − 2ℓ5ℓ6 (b1 ∧ b2 ∧ b3 + b1 ∧ b2 ∧ b4).
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When we set the edge lengths ℓ7, ℓ8, ℓ9 each equal to 0, the underlying graph of Γ is the
loop of three loops L3, and this recovers the calculation from [CL24, Prop. 5.9] and [Rit24,
Ex. 4.2].

7. FURTHER RESULTS AND QUESTIONS

In this final section, we prove some complementary results and raise further questions.

7.1. Torsion Ceresa class. Beauville in [Bea21] produces a nonhyperelliptic curve whose
Ceresa class is torsion (later with Schoen, they show that the Ceresa cycle of this curve
is torsion modulo algebraic equivalence [BS21]). Separate examples may be found in
[BLLS23, LS23a, LS24, LS23b]. Determining whether the locus in the moduli space of
curves Mg of curves with torsion Ceresa class is dense has seen significant recent activity.
It is known that the positive-dimensional components of this locus are not dense in Mg,
see [GZ24, KT24]. For tropical curves, we have the following.

Theorem 7.1. The set of tropical curves with torsion tropical Ceresa class is dense in Mtrop
g .

Proof. Let G = (V, E) be a stable graph of genus g, and ℓ : E → Q>0 an edge length
function taking only rational values. Let Γ be the corresponding metric graph of genus
g. The monodromy operator for Γ has rational coefficients. By Theorem 3.12, the Ceresa
class of Γ is torsion. Since these tropical curves form a dense subset of the tropical moduli
space Mtrop

g , this proves the theorem. □

7.2. Ceresa cycle and hyperelliptic curves. If X is a hyperelliptic curve and ♭ ∈ X is a
Weierstrass point, then the Ceresa cycle [X♭] − [X−

♭
] = 0 as an algebraic cycle. In par-

ticular, this implies that [X♭] − [X−
♭
] is algebraically equivalent to 0 for any ♭. On the

other hand, if X is a curve and ♭ ∈ X have the property that [X♭] − [X−
♭
] is trivial (ra-

tionally, algebraically, or under the Abel–Jacobi image), it is unknown whether X must
be a hyperelliptic curve. As mentioned in § 7.1, there are instances of nonhyperelliptic
curves whose Ceresa class is torsion (respectively, whose Ceresa cycle is torsion modulo
algebraic equivalence).

Similar to the algebraic setting, if Γ is a hyperelliptic tropical curve (in the sense of
[Bak08, Cha13]) and ♭ ∈ Γ is a Weierstrass point, then the tropical Ceresa cycle ν♭(Γ)
equals 0 as a cycle. Motivated by the discussion in the previous paragraph and the ex-
plicit description of the tropical Ceresa class in Theorems 6.4 and 6.8, we ask the following
question.

Question 7.2. Is there a nonhyperelliptic tropical curve Γ such that either the pointed v♭(Γ) or
the unpointed tropical Ceresa class v(Γ) is 0?

In the hyperelliptic case, we have the following.

Proposition 7.3. Suppose Γ is a hyperelliptic tropical curve, and let ♭ ∈ Γ. If v♭(Γ) = 0, then ♭
is a Weierstrass point.

Proof. We provide a sketch of the proof. The Weierstrass points of a hyperelleptic tropical
curve are those points ♭ such that 2♭ is linearly equivalent to 0. Suppose ♭is a Weierstrass
point of Γ. By monodromy invariance of ω as defined in Equation (6.1), we have 2AJ(♭−
♭) = 0, so 2♭ is linearly equivalent to 2 ♭, which is linearly equivalent to 0. So ♭ is a

Weierstrass point, as required. □
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7.3. Tropical Albanese and Roitman’s theorem. Let X be a complex smooth projec-
tive variety of dimension d. The Albanese of X is the intermediate Jacobian Alb(X) =

JH2d−1(X). Roitman’s theorem asserts that the Abel–Jacobi map

AJ : A◦
0(X) → Alb(X)

induces an isomorphism on torsion points. Furthermore, if A0(X) is representable, e.g.,
if A0(X) is finite dimensional, then the Abel–Jacobi map above is an isomorphism. See
[Voi02, Ch. 10] for details.

Now suppose X is a smooth and compact Kähler tropical variety whose monodromy
is rational in the sense of § 3.5. As we demonstrated in that section, the Albanese of X is a
tropical abelian variety. Does the analog of Roitman’s theorem for such tropical varieties
hold? More precisely, we ask the following question.

Question 7.4. Does the tropical Abel–Jacobi map AJ : A◦
0(X) → Alb(X) induce an isomor-

phism on torsion points?

APPENDIX A. RELATION TO THE MORITA CLASS

In [CEL24], the authors define and study a related tropical Ceresa class that is closely
related to the Morita class in [Mor93]. The benefit of this class is that it computes the
ℓ-adic Ceresa class of an algebraic curve C defined over K = C((t)). In this appendix, we
discuss the relationship between this class and our unpointed tropical Ceresa class v(Γ).

A.1. The Johnson homomorphism. We recall some concepts on mapping class groups,
a general reference is [FM12]. Denote by Σg the genus g topological surface and let H =
H1(Σg, Z). Throughout we assume that g ≥ 3. The algebraic intersection pairing is a skew-
symmetric bilinear pairing H × H → Z that computes the signed intersections ⟨a, b⟩ of
representatives of the homology classes a and b. This defines a canonical symplectic form
ω ∈ ∧2H.

The mapping class group of Σg is the group Mod(Σg) of isotopy classes of orientation-
preserving diffeomorphisms from Σg to itself. Given a simple closed curve γ on Σg, de-
note by Tγ ∈ Mod(Σg) the (left-handed) Dehn twist about γ. The Torelli group Ig of Σg is
the normal subgroup of Mod(Σg) consisting of those mapping classes f : Σg → Σg such
that f∗ : H → H is the identity. For g ≥ 3, the Torelli group is generated by bounding pair
maps [Bir71, Pow78]. A bounding pair is a pair of nonseparating, nonintersecting simple
closed curves ℓ and γ that have the same homology class, and a bounding pair map is a
mapping class of the form TℓT−1

γ for a bounding pair (ℓ, γ).
Up to 2-torsion, the abelianization of the Torelli group is isomorphic to (∧3H)/H

where H ⊂ ∧3H via the embedding h 7→ ω ∧ h [Joh85]. The isomorphism is induced
by the Johnson homomorphism J : Ig → (∧3H)/H, which we describe on bounding pair
maps. Suppose (ℓ, γ) is a bounding pair. Cutting Σg along ℓ and γ separates Σg into two
connected surfaces; denote by S the one on the left of ℓ. The homology H1(S, Z) contains
a maximal symplectic subspace; denote the corresponding symplectic form by ωS. Then

(A.1) J(TℓT−1
γ ) = ωS ∧ [ℓ]

where [ℓ] denotes the homology class of ℓ.
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Morita in [Mor93] defines an extension of 2J to a cocycle m : Mod(Σg) → (∧3H)/H.
We describe a method of obtaining such an extension that agrees with Morita’s construc-
tion at the level of group cohomology. Let τ ∈ Mod(Σg) be a hyperelliptic involution of
Σg, i.e., a mapping class such that τ∗ : H → H equals −I and τ2 = 1 ∈ Mod(Σg). Define

mτ : Mod(Σg) → (∧3H)/H f 7→ J([ f , τ])

where [ f , τ] = f τ f−1τ−1 is the commutator. This is a group cocycle, its restriction to Ig

is 2J, its class in H1(Mod(Σg), (∧3H)/H) is independent of τ.

A.2. The Morita class of a tropical curve. Next, we recall the construction in [CEL24].
Suppose Λ is a set of distinct isotopy classes of simple closed curves that have trivial
pairwise geometric intersection. Furthermore, assume that each connected component
of Σg \

⋃
γ∈Λ γ has genus equal to 0. The dual graph of Λ is a graph with

(1) a vertex vS for the closure S of each connected component Σg \
⋃

γ∈Λ γ, and
(2) an edge eγ connecting vS and vS′ for each loop ℓ in the boundary of S and S′

(possibly S = S′).
Let Γ be a tropical curve with a model (G = (V, E), ℓ) and Λ(G) = {γe : e ∈ E} a fixed
arrangement of pairwise nonintersecting isotopy classes of simple closed curves whose
dual graph is G. Define the multitwist TΓ ∈ Mod(Σg) by

TΓ = ∏
e∈E

Tℓ(e)
γe

.

Two Dehn twists Tγ and Tγ′ commute if γ and γ′ have trivial geometric intersection, so
the product above is unambiguous. The Morita class1 m(Γ) of Γ is the cohomology class

m(Γ) ∈ H1(⟨TΓ⟩, (∧3H)/H) ∼= H1(Z, (∧3H)/H)

given by the restriction of mτ to the infinite cyclic subgroup ⟨TΓ⟩ of Mod(Σg). A differ-
ent choice of arrangement Λ(G) produces a multitwist conjugate to TΓ, and hence the
cohomology class m(Γ) is unaffected.

There is a nice expression for the image of the Morita class m(Γ) in a particular sub-
quotient B(δΓ), which we now describe. Denote by βe ∈ H the homology class of γe and
let Y = span{βe : e ∈ E} ⊂ H. Because each connected component of Σg \

⋃
e∈E γe has

genus equal to 0, the subgroup Y defines a (saturated) Lagrangian subgroup of the sym-
plectic space H. Given a spanning tree T = (V, F) of G, there are g edges in Fc, and the
corresponding homology classes βε form a basis of Y. This extends to a symplectic basis
{αε, βε

∣∣ ε ∈ Fc} where ⟨αe, βε⟩ = δeε for e, ε ∈ Fc.
Denote by δΓ the symplectic representation of TΓ. By the formula for symplectic repre-

sentation of Dehn twists:

(Tγ)∗([ζ]) = [ζ] + ⟨[ζ], [γ]⟩[γ]

we have that the matrix of δΓ with respect to the basis {αe, βe
∣∣ e ∈ Fc} is

δΓ =

[
Ig 0
QΓ Ig

]
1This class in [CEL24] is called the tropical Ceresa class. We use the term Morita class to distinguish this

class from the tropical Ceresa class defined in this paper.
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where QΓ is the polarization matrix of Γ as in § 5. In particular (δΓ − I)(H) ⊂ Y. The
induced map δΓ : ∧3 H → ∧3H satisfies

(δΓ − I)(h1 ∧ h2 ∧ h3) = (δΓ − I)(h1) ∧ h2 ∧ h3 + h1 ∧ (δΓ − I)(h2) ∧ h3 + h1 ∧ h2 ∧ (δΓ − I)(h3)

+ (δΓ − I)(h1) ∧ (δΓ − I)(h2) ∧ h3 + (δΓ − I)(h1) ∧ h2 ∧ (δΓ − I)(h3) + h1 ∧ (δΓ − I)(h2) ∧ (δΓ − I)(h3)

+ (δΓ − I)(h1) ∧ (δΓ − I)(h2) ∧ (δΓ − I)(h3).

The operator δΓ − I on (∧3H)/H is nilpotent, and so we may consider its corresponding
weight filtration W• (see, e.g., [Hai08, § 7]):

W−6 = ∧3Y, W−4 = (H ∧ Y ∧ Y)/Y W−2 = (H ∧ H ∧ Y)/H W0 = (∧3H)/H,
W−5 = W−6, W−3 = W−4, W−1 = W−2.

The k-th graded piece of this filtration is Grk(W•) = Wk/Wk−1. By the above formula for
δΓ and the fact that (δΓ − I)(H) ⊂ Y, we have that (δΓ − I)(Wk) ⊂ Wk−2, and so we have
induced maps

δΓ − I : Grk(W•) → Grk−2(W•).
When k = 1, this map is an isomorphism after tensoring with Q. Explicitly,

(A.2) (δΓ − I)(h1 ∧ h2 ∧ y) = QΓ(h1) ∧ h2 ∧ y + h1 ∧ QΓ(h2) ∧ y

and

(δΓ − I)−1(h ∧ y1 ∧ y2) =
1
2 (h ∧ Q−1

Γ (y1) ∧ y2 + h ∧ y1 ∧ Q−1
Γ (y2)− QΓ(h) ∧ Q−1

Γ (y1) ∧ Q−1
Γ (y2)).

Define

A(δΓ) = im(H1(⟨TΓ⟩, (∧3H)/H) → H1(⟨TΓ⟩, W−4) ∼= W−4/(δΓ − I)W−2,

B(δΓ) = coker(Gr−2(W•) → Gr−4(W•)) ∼= W−4/((δΓ − I)W−2 + W−6).

Because (δΓ − I) : Gr−2(W•) → Gr−4(W•) is rationally surjective, the groups A(δΓ) and
B(δΓ) are finite. A main result of [CEL24] is that m(Γ) ∈ A(δΓ), and is therefore torsion.
Quotienting by W−6 yields a surjective homomorphism A(δΓ) → B(δΓ). The image of the
Morita class m(Γ) in B(δΓ), which we denote by n(Γ), is given by

(A.3) n(Γ) = ∑
e∈E

J(TγeT
−1
τ(γe)

).

We end this section by describing a hyperelliptic involution τ that will be useful in the
proof of Theorem A.3.

Proposition A.1. Given a spanning tree T = (V, F) of G, there is a hyperelliptic involution
τ ∈ Mod(Σg) such that

τ(γε) = −γε

for ε ∈ Fc. That is, τ takes γε to itself, but reverses its orientation.

Proof. Let S be the surface obtained by cutting along γε for ε ∈ Fc. The surface S is
connected, has genus 0, and 2g boundary components. Choose a simple closed curve ϑ
which separates the two copies γε,1 and γε,2 of γε in S. Cutting along ϑ results in two
homeomorphic surfaces S1, S2 of genus 0 and with g + 1 boundary components with
the γε,i’s in Si. Choose a homeomorphism ϕ : S1 → S2 which sends γε,1 to γε,2. The
homeomorphisms ϕ and ϕ−1 define a hyperelliptic involution τ on Σg with the required
property. □
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For example, the curves β1, . . ., β5 in Figure 1.1 satisfy τ(βi) = −βi where τ is the
hyperelliptic involution given by rotating the surface 180◦ about the horizontal axis.

A.3. Comparison between the Morita class and the tropical Ceresa class. In this sec-
tion, we provide the relationship between the Morita class n(Γ) and the tropical Ceresa
class v(Γ). First, we relate B(δΓ) to the primitive intermediate Jacobian JH2,1(Jac(Γ)).

Proposition A.2. We have an embedding

ΦΓ : B(δΓ) → JH2,1(Jac(Γ)), αε1 ∧ βε2 ∧ βε3 7→ [aε1 , bε2 ∧ bε3 ].

See § 6.1 for the definitions of aε and bε.

Proof of Proposition A.2. Let X = span{αε

∣∣ ε ∈ Fc}. The maps αε 7→ aε and βε 7→ bε define
isomorphisms

(A.4) X ∧ X ⊗ Y ∼= H1,2(Jac(Γ), Z) and X ⊗ Y ∧ Y ∼= H2,1(Jac(Γ), Z).

See Equation (4.1). Set

B(δΓ) =
X ⊗ Y ∧ Y

(δΓ − I)(X ∧ X ⊗ Y)
.

Note that B(δΓ) ∼= B(δΓ)/ω ∧ Y. By the description of δΓ − I in Equation (A.2) and N in
Propositions 4.1 and 5.2, we have a commutative diagram

X ∧ X ⊗ Y X ⊗ Y ∧ Y B(δΓ) 0

H1,2(Jac(Γ), Z) H2,1(Jac(Γ), R) JH2,1(Jac(Γ)) 0

δΓ−I

N

where the rows are exact. The left and middle vertical arrows are the isomorphisms in
Equation (A.4). The right map produces the desired embedding ΦΓ. □

We conjecture a formula (Conjecture A.4) for the Johnson homomorphism that could
be of independent interest. Using this, under the comparison morphism ΦΓ from Propo-
sition A.2, we have the following theorem.

Theorem A.3. Let Γ be a tropical curve with integral edge lengths. If Conjecture A.4 holds, then
we have

ΦΓ(n(Γ)) = v(Γ).

We now describe our conjectural formula for the Johnson homomorphism. Suppose
there are nonseparating simple curves γ, γ′ and β1, . . . , βg such that

(1) γ and γ′ are homologous and disjoint from each βi, and
(2) the curves β1, . . . , βg are pairwise disjoint and their homology classes form a basis

for a Lagrangian subspace of H1(Σg, Z).
Let S be the surface obtained by cutting along β1, . . . , βg. This is a genus 0 surface with

2g boundary components. The boundary components come in pairs corresponding to
the curves β1, . . . , βg. The curves γ and γ′ divide S into four types of regions, depending
on whether the region lies to the left or to the right of γ and γ′, respectively. (Without loss
of generality, we may assume that γ and γ′ intersect transversally.) We say these regions
are of type LL, LR, RL and RR (e.g., LR means the region is to the left of γ and to the right
of γ′).
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The curve βi is split by γ (respectively, γ′) if exactly one of the two copies of βi in S is
to the left of γ (respectively, γ′). Otherwise, βi is nonsplit. Since γ and γ′ are homologous,
we have that βi is split by γ if and only if it is split by γ′. Furthermore, the copy of a split
βi on the left of γ also lies to the left of γ′. This implies that the split pairs only appear
in the regions of types LL and RR. Define a sign function sgn

γ,γ′ : {β1, . . . , βg} → {0,±1}
by

sgn
γ,γ′(βi) =


−1 if βi is of type LR,
1 if βi is of type RL,
0 otherwise.

See Figure 1.1. Finally, suppose α1, . . . , αg are curves such that the homology classes [α1],
. . ., [αg], [β1], . . ., [βg] form a symplectic basis of H1(Σg, Z).

Conjecture A.4. The image of the Johnson homomorphism on the mapping class TγT−1
γ′ is

g

∑
i=1

sgn
γ,γ′(βi) [αi] ∧ [βi] ∧ [γ].

Proof of Theorem A.3. There are g curves in {γε

∣∣ ε ∈ Fc}, and their homology classes form
a basis for a Lagrangian subspace of H. Enumerate these as β1, . . . , βg. Let α1, . . . , αg be
curves so that the homology classes of the αi, βi’s form a symplectic basis of H. By Propo-
sition A.1, each pair (γe, τ(γe)), together with the homology basis above, satisfies the hy-
potheses of Conjecture A.4. So the theorem follows from this conjecture, the formula for
n(Γ) in Equation (A.3), and the formula for v(Γ) in Theorem 6.8. □

We describe a situation where we can prove Conjecture A.4. Suppose there is a se-
quence of curves γ = γ1, γ2, . . . , γk = γ′ such that

• each γi is disjoint from β1, . . . , βg,
• [γi] = [γ], and
• γi and γi+1 are disjoint.

We claim that Conjecture A.4 holds in this case.
Before proving this claim, we comment about these conditions. As demonstrated in

[Put08, Thm 1.9], one can always find a sequence γ1, . . . , γk satisfying the second and
third conditions, but as communicated to us by by Andrew Putman, it may not be pos-
sible to ensure the first condition. Nevertheless, we believe that Conjecture A.4 still
holds. In our proof of Theorem A.3, we rely on the validity of this conjecture in the
case (γ, γ′) = (γe, τ(γe)) for e ∈ E for some hyperelliptic involution τ.

Let us prove the claim we made above. We proceed by induction on k. When k = 2,
the curves γ and γ′ are disjoint. Then the formula above follows from the description of
the Johnson homomorphism in Equation (A.1).

For the inductive step, assume that ϑ is a simple closed curve homologous to γ such
that ϑ and γ′ are disjoint, and the formula holds for the pair (γ, ϑ). We have

J(TγT−1
γ′ ) = J(TγT−1

ϑ ) + J(TϑT−1
γ′ )

=
g

∑
i=1

sgn
γ,ϑ(βi) [αi] ∧ [βi] ∧ [γ] +

g

∑
i=1

sgn
ϑ,γ′(βi) [αi] ∧ [βi] ∧ [γ].
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This equals
g

∑
i=1

sgn
γ,γ′(βi) [αi] ∧ [βi] ∧ [γ].

because of the relation

sgn
γ,ϑ(βi) + sgn

ϑ,γ′(βi) = sgn
γ,γ′(βi)

which readily follows from the definition of the sign function.
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