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Abstract

In this paper, we present a result concerning the relation between the path-with of a planar graph
and the path-width of its dual. More precisely, we prove that for a 3-connected planar graph G,
pw(G) ≤ 3pw(G∗) + 2. For 4-connected planar graphs, and more generally for Hamiltonian planar
graphs, we prove a stronger bound pw(G∗) ≤ 2 pw(G) + c. The best previously known bound was
obtained by Fomin and Thilikos who proved that pw(G∗) ≤ 6 pw(G) + cte. The proof is based on
an algorithm which, given a fixed spanning tree of G, transforms any given decomposition of G into
one of G∗. The ratio of the corresponding parameters is bounded by the maximum degree of the
spanning tree.

1 Introduction

A planar graph is a graph that can be embedded in the plane without crossing edges. It is said to be
outerplanar if it can be embedded in the plane without crossing edges and such that all its vertices are
incident to the unbounded face. For any graph G, we denote by V (G) its vertex set and by E(G) its
edge set. The dual of a planar graph G, denoted by G∗, is the graph with one vertex for each face, and
joining two vertices by one edge in G∗ for each edge that the corresponding faces in G share. The weak
dual TG is the induced subgraph of G∗ obtained by removing the vertex corresponding to the unbounded
face. Note that the dual of a planar graph can be computed in linear time.

The notion of path-width was introduced by Robertson and Seymour [11]. A path decomposition of a
graph G is a set system (X1, . . . , Xr) of V (G) (Xis are called bags) such that

1.
⋃r

i=1 Xi = V (G);

2. ∀ xy ∈ E, ∃ i ∈ {1, . . . , r} : {x, y} ⊆ Xi;

3. for all 1 ≤ i0 < i1 < i2 ≤ r, Xi0 ∩ Xi2 ⊆ Xi1 .

The width of the path-decomposition (X1, . . . , Xr) is max1≤i≤r |Xi|−1. The path-width of G, denoted by
pw(G), is the minimum width over its path decompositions. For the definition of other width-parameters,
branch-width and tree-width, we refer to the survey of Bodlaender [3] and Reed [10]. We denote the tree-
width and branch-width of G by tw(G) and bw(G), respectively.

Comparing the width-parameters of G and G∗ seems to be a very natural question. Indeed, a more
interesting (algorithmic) problem should ask for a natural way of transforming a given decomposition of
G to a decomposition of G∗ without changing ”too much” the width of the corresponding decompositions.

It is a consequence of Seymour and Thomas work [13] that such a comparison exists for branch-width:
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Theorem 1 (Seymour and Thomas [13]) For every bridgeless planar graph G, bw(G) = bw(G∗).

Calculating branch-width can be also done in polynomial time for planar graphs.
For tree-width, Lapoire [9] proved the following theorem using algebraic methods:

Theorem 2 (Lapoire [9]) For every planar graph G, tw(G) ≤ tw(G∗) + 1.

This was a conjecture of Robertson and Seymour [12] and a combinatorial shorter proof of this theo-
rem can be found in Bouchitté et al [4]. Remark that it is an open question to see if tree-width can be
calculated in polynomial time in planar graphs.

But how about the path-width? Is there any relation? Note that computing the path-width of
graphs is an NP-complete problem even for planar graphs with maximum degree 3. For biconnected
outerplanar graphs, Bodlaender and Fomin [2] provided a linear time algorithm which approximates the
path-width of biconnected outerplanar graphs with a multiplicative factor of 2. To do so, they exhibit
a relationship between the path-width of an outerplanar graph and the path-width of its dual. More
precisely they prove that for any biconnected outerplanar graph G without loops and multiple edges,
pw(G∗) ≤ pw(G) ≤ 2 pw(G∗) + 2.

By the results of Coudert, Huc and Sereni [5] it is impossible to have pw(G) = pw(G∗) (Fomin and
Thilikos provided similar constructions in [8]): they constructed an infinite family of outerplanar graphs
such that each one has path-width twice the path-width of its dual. Indeed they proved the following
theorem:

Theorem 3 (Coudert et al. [5]) For every biconnected outerplanar graph G, pw(G∗) ≤ pw(G) ≤
2 pw(G∗) − 1. Furthermore, for every integer p ≥ 1 and every integer k ∈ {1, 2, . . . , p + 1}, there
exists a biconnected outerplanar graph of path-width p + k whose dual has path-width p + 1.

Fomin and Thilikos showed in [8] a linear inequality between the two parameters:

Theorem 4 (Fomin and Thilikos [8]) There is a constant c such that for every 3-connected planar
graph G we have pw(G∗) ≤ 6 pw(G) + c.

In this paper, we propose an algorithm which given a spanning tree of G, transforms a given decom-
position of G into one of G∗. The ratio of the corresponding parameters is bounded by the maximum
degree of the spanning tree. Our transformation then reduces the question of comparing the different
width-parameters of G and G∗ to the problem of finding spanning trees of low maximum degree in a
given planar graph.

Theorems 5 and 6 are the main theorems of this paper.

Theorem 5 For every 3-connected planar graph G, we have pw(G∗) ≤ 3 pw(G) + 2.

Remark that Theorem 5 improves Theorem 4.

Theorem 6 If G is a planar graph with a Hamiltonian path, then pw(G∗) ≤ 2 pw(G) + 1.

Theorem 6 in particular proves that for a 4-connected planar graph G we always have pw(G∗) ≤
2 pw(G) + 1. Indeed, by a theorem of Tutte [14], every such graph has a Hamiltonian cycle.
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2 Main Theorem

In this section we present the proofs of Theorems 5 and 6. We will use the following notations:
Given a planar graph G on vertex set V (G) and edge set E(G) of maximum degree ∆(G), by F (G)

we mean the set of faces of G, which is also the vertex set of its dual. The number of faces, edges and
vertices of G are respectively denoted by fG, eG and nG. Given a face F ∈ F (G), we denote the set of
vertices belonging to this face by V (F ). E(F ) is the set of edges appearing on the boundary of F . Given
a set A, by P(A) we denote the family of all subsets of A.

Definition 1 Let G and H be two graphs and σ a map from V (G) to P(V (H)). We say that σ is a
connected map from G to H if it satisfies the following two properties:

1. for every v ∈ V (G), the subgraph of H induced by σ(v) is connected.

2. for every edge vw ∈ E(G), the subgraph of H induced by σ(v) ∪ σ(w) is also connected.

For every vertex w ∈ V (H), we define σ−1(w) := {v ∈ V (G)| w ∈ σ(v)}. The degree of σ is the
integer k = max |σ−1(w)|.

Lemma 1 Let G and H be two graphs. If there exists a connected map σ of degree at most k from G to
H, we have:

pw(G) ≤ k · pw(H) + k − 1

Proof
Let (X1, . . . , Xr) be a path-decomposition of H . We first show that the sequence (σ−1(X1), . . . , σ

−1(Xr))
provides a path-decomposition of G. For this, we should prove the three properties of a path-decomposition:

• Every vertex v of G appears in one σ−1(Xi). To show this, let u ∈ σ(v). As (X1, . . . , Xr) forms a
path-decomposition of H , there exists an i such that u ∈ Xi. It is clear that for this bag, v appears
in σ−1(Xi).

• For every edge xy ∈ E(G), there is one σ−1(Xi) which contains both x and y. To prove this, let
A = σ(x) and B = σ(y). The graph induced by H on A ∪ B is connected, so at least one of the
two following two cases appears:

• A ∩ B 6= ∅: let u ∈ A ∩ B and Xi be the bag which contains u. Then σ−1(Xi) contains both
x and y.

• There exist a ∈ A and b ∈ B such that ab ∈ E(H). Let Xi be the bag which contains both a

and b. It is clear that σ−1(Xi) contains both x and y.

• For all 1 ≤ i0 < i1 < i2 ≤ r, we should prove σ−1(Xi0) ∩ σ−1(Xi2) ⊆ σ−1(Xi1). Let v ∈
σ−1(Xi0) ∩ σ−1(Xi2). The graph induced by σ(v) in H , i.e. H [σ(v)], is connected and intersects
both Xi0 and Xi2 . The graph H [σ(v)] \Xi1 is not connected. We infer that σ(v) ∩ Xi1 6= ∅, which
implies v ∈ σ−1(Xi1).

As the degree of σ is at most k and |Xi| ≤ pw(H) + 1, we have |σ−1(Xi)| ≤ k(pw(H) + 1), which
proves that the width of the path-decomposition (σ−1(X1), . . . , σ

−1(Xr)) is at most k.pw(H) + k − 1.
This finishes the proof of the lemma. �

Remark that the same proof applies for other types of decompositions.
From now on, our aim will be to find a way to produce low degree connected maps from G∗ to G.

The key role will be played by spanning trees of G: every spanning tree of maximum degree k produces
a connected map from G∗ to G of degree at most k. Before we proceed, we need some new definitions:

An edge-assignment to faces of G is a one-to-one map from the faces of G to the edges of G which to
each face F of G, associates one edge of E(F ). More formally:
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Definition 2 An edge-assignment is a function: τ : F (G) → E(G) such that

1. for every face F ∈ F (G), τ(F ) is an edge on the boundary of F , and

2. τ(F ) 6= τ(F ′) for all distinct faces F, F ′ ∈ F (G).

Given an edge-assignment, we define the map στ : F (G) → P(V (G)) as follows: στ associates to every
face F in F (G) the subset V (F ) \ V (τ(F )).

Proposition 1 For every edge-assignment τ , the map στ is connected.

Proof It is clear that the graph induced by στ (F ) is connected, since it forms a path. Two faces F1, F2

sharing an edge e can not be both associated to e (since they are associated to different edges). Conse-
quently στ (F1) ∪ στ (F2) induces also a connected subgraph of G. This proves that στ is connected. �

Given an edge-assignment τ , let H be the subgraph of G consisting of non selected edges; i.e. H =
G \ {τ(F )|F ∈ V (G∗)}. Using Euler’s Formula (fG + nG = eG + 2 ), we infer that H contains exactly
nG − 2 edges. We have

Proposition 2 For all v ∈ V (G), |σ−1
τ (v)| = degH(v).

Proof A selected edge (an edge of G \ H) is associated to one of the two faces containing it. Given a
vertex v of G of degree d, it appears exactly in d faces. Suppose r edges incident to v are selected; they
are associated to exactly r faces incident with v. The image of this faces by στ does not contain v, and
v appears in στ (F ) for all other faces F incident to v. So |σ−1

τ (v)| = d − r = degH(v). �

Corollary 1 στ is of degree ∆(H).

Remark that the average degree in H is always < 2.

Definition 3 A subgraph H ⊆ G is nice if it has nG − 2 edges and if there exists an edge-assignment τ

with τ(F ) ∈ E(G) \ E(H).

Hence to prove Theorem 5, by using Lemma 1, we need to find a nice subgraph with maximum degree
at most 3. To proceed we need the following lemma:

Lemma 2 Let G be a planar graph and T a spanning tree of maximun degree k in G. Let e be an edge
of T . The subgraph H = T \ e is a nice subgraph of maximum degree at most k.

Proof To prove that H is nice we will apply Hall’s matching theorem to the adjacency graph A between
faces of G and edges of G\H . More precisely, A is the bipartite graph on vertex set F (G)t(E(G)\E(H)).
An edge of A connects F ∈ F (G) (i.e. F a face of G) to e ∈ E(G) \ E(H), if e belongs to E(F ). We
want to prove that there exists a matching in A covering all the vertices of F (G). Given a set of faces
{F1, . . . , Fi}, we need to prove that the corresponding set has at least i neighbours in A. Let us consider
the planar graph S obtained by taking the union of Fi’s, we have:

• fS ≥ i + 1 (because G∗ is connected), and

• fS + nS = eS + 2 (Euler’s formula).

We conclude that eS − (nS − 1) ≥ i. As H is a forest, the number of edges of H incident to vertices
of S is at most nS − 1. So the hypothesis of Hall’s theorem are satisfied. This proves that H is a nice
subgraph. �

Barnette proved in [1] the following theorem:
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Theorem 7 (Barnette [1]) Every 3-connected planar graph has a spanning tree of maximum degree 3.

Later, Czumaj and Strothmann [6] proved that such a spanning tree in G can be found in linear time.
We can now present the proof of Theorems 5 and 6:

Proof of Theorem 5 Barnette’s theorem insures the existence of a spanning tree of maximun degree
three, which by Lemma 2 provides a nice subgraph of maximun degree 3. The associated edge-assignment
gives a connected map of degree three (Proposition 1 and Corollary 1), hence Theorem 5 follows from
Lemma 1. The algorithm of Czumaj and Strothmann [6] combined with the algorithm of finding a max-
imum matching in A (see the proof of Lemma 2) results in a polynomial time algorithm to find the
corresponding decompositions. �

Proof of Theorem 6 Using Lemma 2, deleting an edge of the Hamiltonian path gives a nice subgraph
of G of maximum degree 2. �

3 Discussion

A 3-connected planar graph does not contain in general a nice subgraph of maximum degree two. Indeed,
it can happen that the graph G does not contain a subgraph of maximum degree 2 with n − 2 edges.
Even more, for every constant k, there exist planar graphs such that for every subgraph H , containing
n− 2 edges and covering all vertices, we have

∑
deg(v)≥2 deg(v) ≥ k. Examples of such graphs are planar

graphs which can not be covered by less than k disjoint paths. In [7], an inductive construction of an
infinite family of non Hamiltonian Delaunay triangulations is presented. Two examples of graphs of this
family are given in Figure 3. By looking at the central separating triangle and using induction, one can
prove that for any k, a large graph of this family does not contain k disjoint paths covering all its vertices.
This shows that we can not expect to improve Theorem 5 via nice subgraphs.

Figure 1: Two graphs of the family constructed in [7]
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