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Abstract. The aim of this paper is to introduce a certain number of tools and results
suitable for the study of valuations of higher rank on function fields of algebraic varieties.
This will be based on a study of higher rank quasi-monomial valuations taking values in the
lexicographically ordered group Rk.

We prove a duality theorem that gives a geometric realization of higher rank quasi-
monomial valuations as tangent cones of dual cone complexes. Using this duality, we provide
an analytic description of quasi-monomial valuations as multi-directional derivative operators
on tropical functions.

We consider moreover a refined notion of tropicalization in which we remember the initial
terms of power series on each cone of a dual complex, and prove a tropical analogue of the
weak approximation theorem in number theory by showing that any compatible collection
of initial terms on cones of a dual cone complex is the refined tropicalization of a rational
function in the function field of the variety.

Endowing the value group Rk with its Euclidean topology, we study then a natural topol-
ogy on spaces of higher rank valuations that we call the tropical topology. By using the
approximation theorem we provide an explicit description of the tropical topology on tan-
gent cones of dual cone complexes.

Finally, we show that tangent cones of dual complexes provide a notion of skeleton in
higher rank non-archimedean geometry. That is, generalizing the picture in rank one to
higher rank, we construct retraction maps to tangent cones of dual cone complexes, and use
them to obtain limit formulae in which we reconstruct higher rank non-archimedian spaces
with their tropical topology as the projective limit of their higher rank skeleta.

As an application of the above framework, we consider variations of the Newton-Okounkov
bodies associated to big line bundles over the spaces of top rank valuations. We show that
on the higher rank skeleta endowed with their tropical topology, this variation is continuous.
This goes in the direction of answering an open question in the literature stemming from the
pioneering work of Kaveh-Khovanskii and Lazarsfeld-Mustaţă about the regularity properties
of variations of Newton-Okounkov bodies.
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1. Introduction

The aim of this paper is to introduce a certain number of tools and results suitable for
the study of valuations of higher rank on function fields of algebraic varieties. This will be
based on finite type approximations of the valuation spaces under consideration via a theory
of higher rank skeleta developed in this paper, which provides a geometric interpretation of
higher rank valuations in terms of tangent cones of cone complexes.

The motivations behind the study undertaken here come

• on one side, from the theory of Newton-Okounkov bodies and their variations [Oko96,
KK12,LM09,Bou12,BC11,Ami14,CGG+18,CFK+17,KM19a,RW19,EH22,CMM21,
Bos21, HKW20], where it has been an open question to understand continuity and
wall-crossing behavior of convex bodies associated to big line bundles on a given
variety when the corresponding defining valuations vary.
• on the other side, from the recent works [AN20, AN22, AN23b] involving the hybrid

geometry of curves and their moduli spaces, in the constructions of higher rank hybrid
and tropical compactifications, and the development of a function theory in higher
rank tropical non-archimedean geometry.

In this paper, we propose an answer to the first by providing a suitable base space for
the study of families of Newton-Okounkov bodies. The second perspective highlights the
importance of higher rank non-archimedean and tropical geometries in the study of the as-
ymptotic geometry of multiparameter dependent families of complex varieties in connection to
asymptotic Hodge theory. In this regard, a framework for higher rank polyhedral geometry in-
timately related to the content of this paper is developed in the forthcoming companion [Iri23]
and [AN23a].

In the rest of this introduction, we provide an overview of our results and comment on the
links to the related works.

All through this paper we fix a field κ that we can assume to be algebraically closed. For
a positive integer k ∈ N, we set [k] := {1, . . . , k}.

1.1. Valuations. We start by explaining the kind of valuations we consider in this paper.
Let (Γ,⪯) be a totally ordered abelian group and let K/κ be a field extension. A valuation

ν on K/κ with values in Γ is a map ν : K → Γ ∪ {∞} which verifies the following properties
for any pair of elements a, b ∈ K.

(1) ν(a) =∞⇐⇒ a = 0.
(2) ν(a + b) ≥ min{ν(a), ν(b)} and ν(ab) = ν(a) + ν(b).
(3) ν(a) = 0 provided that a ∈ κ.

In this paper we consider the additive group Rk, for a fixed k ∈ N, endowed with the
lexicographic order ⪯lex that we simplify to ⪯. This is the order defined by saying x ⪯ y,
x = (x1, . . . , xk) and y = (y1, . . . , yk), if either x = y or there is i ∈ [k] such that xj = yj for
j < i and xi < yi. Moreover, we will suppose that K has finite transcendence degree over κ,
that is, we assume the existence of a smooth connected variety X over κ such that K is the
function field K(X) of X. The integer number k will be regarded as an upper bound for the
rank for the valuations considered in this paper. The idea to consider valuations of different
ranks simultaneously comes from practical situations in the study of degenerations of families
of algebraic varieties over higher dimensional bases.

Basic examples of valuations in this setting are the followings:
– (Monomial valuations). Let X = A2 = Spec (κ[X,Y]) and K = κ(X,Y). For x, y ∈ R+,

there is a unique valuation

νx,y : K → R ∪ {∞}
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called monomial valuation with respect to (x, y) and given by

νx,y(f) := min
{
ix + jy

∣∣ cij ̸= 0
}
, f =

∑

(i,j)∈Z2

cijX
i
Y
j ∈ κ[X,Y].

Here and all through the paper, R+ is the set of non-negative real numbers.
– (Divisorial and flag valuations). Suppose X/κ is a normal irreducible variety and let

F ⊊ X be a closed irreducible subvariety of codimension one. The order of vanishing along
F denoted by ordF is a rank one valuation on K = K(X), and any positive scalar multiple
of ordF is called a divisorial valuation. More generally, we can consider a flag of normal
irreducible subvarieties

F : F0 ⊋ F1 ⊋ · · · ⊋ Fk

where F0 = X and codimX(Fℓ) = ℓ, ℓ ∈ [k]. Each Fℓ thus defines a discrete valuation ordFℓ

over K(Fℓ−1). This gives rise to a flag valuation νF of rank k defined as

νF : K(X)∗ → Rk

f 7→ (ordF1(f1), ordF2(f2), . . . , ordFk
(fk))

(1.1)

where f1 = f and fℓ+1 ∈ K(Fℓ) is the restriction of fℓ · t
−ordFℓ+1

(fℓ)

ℓ+1 to Fℓ+1 for tℓ+1 a
uniformizer for the valuation ordFℓ+1

, see for example [LM09,KK12] for more details and for
the link to the theory of Newton-Okounkov bodies.

– (Quasi-monomial valuations) We can generalize the first example above by replacing
A2 by any normal irreducible variety X and taking a simple normal crossing (SNC) divisor
D = D1 ∪ · · · ∪ Dr on X. This leads to the concept of quasi-monomial valuations, which
generalizes monomial, divisorial, and flag valuations, as we will see later in Theorem 4.12.

Consider the dual cone complex of the divisor D. This is a simplicial cone complex Σ(X,D),
that sometime we abbreviate to Σ(D), in which there is a ray ρi corresponding to each
component Di of D, and for each subset I ⊆ [r], each connected component (if any) of the
intersection DI :=

⋂
i∈I Di gives rise to a face σ with generating rays {ρi}i∈I . More details

can be found in Construction 2.6. Each face σ of Σ(D) thus corresponds to a connected
component of DI , for I ⊂ [r], that we denote by Dσ. In this case, we set Iσ = I identified as
the set of elements i ∈ [r] such that Di contains Dσ. The divisor D being SNC, Dσ is normal
irreducible and has a generic point ησ. Moreover, we can choose local equations {zi}i∈I for
the components {Di}i∈I around ησ.

Just as we did for the case of monomial valuations, for the totally ordered abelian group
(Γ,⪯), we can pick a vector α = (αi)i∈I with αi ∈ Γ⪰0, and define a unique valuation να on
K = K(X) by requiring

να(
∏

i∈I
zγii ) :=

∑

i∈I
αiγi

for any γ = (γi) ∈ ZI
+. We can then naturally extend this, first, to the local ring OX,ησ by

taking the minimum over terms of a power series expansion (after passing to the local com-
pletion), and then to the full function field. This is the quasi-monomial valuation associated
to D and the weights α. Further details can be found in Section 1.5 and Section 4.

We denote by M k(D) = M k(X,D) the set of all quasi-monomial valuations of rank
bounded by k with (Γ,⪯) = (Rk,⪯). For k = 1, we further simplify the notation to M (D).
From the above description, it follows that elements of M (D) are in bijection with the pairs

(σ, α) with α = (αi)i∈Iσ ∈ RIσ
+ . This means M (D) can be naturally identified with Σ(D).

The above sets come with a natural tower of projection maps

M (D)←M 2(D)← · · · ←M k−1(D)←M k(D)← . . .

induced by the projection maps to the first j − 1 coordinates Rj → Rj−1, j = 2, . . . , k.
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1.2. Tropicalization. Let X be a normal irreducible variety and let D be an SNC divisor on
X. The elements of the dual cone complex Σ(D) correspond to quasi-monomial valuations of
rank bounded by one on the function field K(X) of X. For each rational function f ∈ K =
K(X), we thus get by evaluation a function

trop(f) : Σ(D)→ R, α ∈ σ → να(f),

called the tropicalization of f . This is a piecewise integral linear function on each cone σ of
Σ(D).

In this paper we provide an extension of this picture to the case of higher rank quasi-
monomial valuations. This will be based on a duality theorem we state in the next section
which will allow to give a geometric meaning to the space M k(D) and the tropicalization
map

trop(f) : M k(D)→ Rk, α ∈ σ → να(f),

for α ∈ ((Rk)⪰0
)Iσ , where ⪰ refers to the lexicographical order.

1.3. Tangent cone bundles and duality theorem. The first contribution of this paper
is the duality theorem below which provides a geometric realization of the set M k(D) of
quasi-monomial valuations of rank bounded by k as a tangent cone bundle on Σ(D).

Consider the projection map M k(D) →M (D) which allows to view M k(D) as a bundle
over M (D) = Σ(D). We have the following geometric characterization of this bundle.

Theorem 1.1 (Duality theorem). There is an isomorphism of bundles over M (D) ≃ Σ(D)

(1.2)

M k(D) TCk−1Σ(D)

M (D) Σ(D)

≃

≃

where TCk−1Σ(D) is defined as the set of all elements of the form (x;w1, . . . , wk−1) where

- the base point x is a point of Σ(D), and
- w1, . . . , wk−1 is an ordered set of tangent vectors to Σ(D) at x such that we have

x + εw1 + ε2w2 + · · ·+ εrwr ∈ Σ(D),

for any r ∈ [k − 1] and any small enough ε > 0.

For a more precise meaning to the above taken sum, we refer to Section 2.4. We call
TCk−1Σ(D) the tangent cone bundle of Σ(D) of order k − 1.

Using the above correspondence, we give an explicit realization of higher rank quasi-
monomial valuations as directional derivative operators defined in terms of the corresponding
tangent vectors. In order to do this, we equip the cone complex Σ(D) with its structure
sheaf OΣ(D) which is the sheaf of tropical functions. These are continuous functions whose
restrictions on each cone σ of Σ coincide with a piecewise integral linear function defined on
that cone.

A rational function f ∈ K = K(X) induces a global section trop(f) of the structure sheaf.

Theorem 1.2 (Duality Theorem, analytic form). Let (x;w) be an element of the tangent
cone TCk−1Σ(D) with w = (w1, . . . , wk−1). The valuation νx;w given by the duality theorem
above is described as

vx;w : K(X) −→ Rk

f 7−→
(
trop(f)(x), Dw1trop(f)(x), . . . , Dw1,...,wk

trop(f)(x)
)

where
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• Dw1trop(f)(x) is the directional derivative of the function trop(f) at x in the direction
w1, and
• recursively, Dw1,...,wr+1trop(f)(x) is the directional derivative of Dw1,...,wrtrop(f)(x)
seen as a function on the variable wr in the direction wr+1.

1.4. Topologies on the tangent cone of dual complexes. Notations as before, let k
be an integer and consider the tangent cone bundle TCk−1Σ(D). There are four natural
topologies one can define on the tangent cone of a dual complex. They all coincide in the
case k = 1, but differ fundamentally for larger values of k. We now discuss these topologies.

First note that by the definition of the monomial valuations, we have an injection M k(D) ↪→
(Rk)r⪰0. Via the duality theorem, the two first topologies on the tangent cone TCk−1Σ(D)
are induced by this injection. Namely,
• (Ordered topology) This is the topology on TCk−1Σ(D) ≃M k(D) induced by the ordered
topology of (Rk)⪰0.
• (Euclidean topology) This is the topology on TCk−1Σ(D) induced by the Euclidean topology
of (Rk)⪰0 ⊆ Rk. Equivalently, this is the topology induced by the Euclidean topology of Σ(D).
• (Hahn-Berkovich topology) This is the natural topology which appears usually in the context
of non-archimedean geometry, that is the coarsest topology which makes continuous all the
tropicalization maps

trop(f) : TCk−1Σ(D)→ Rk
lex, f ∈ K(X)

where Rk
lex refers to Rk equipped with its lexicographically ordered topology. Note that this

makes sense for any ordered abelian group Γ as the value group for the space of valuations.
• (Tropical topology) This is arguably the most interesting topology one can define on the
tangent cone, as it happens to mix the properties of the Euclidean topology on Rk with those
coming from the lexicographic order used in defining the valuations (see also Section 1.6). By
definition, this is the coarsest topology which makes continuous all the tropicalization maps

trop(f) : TCk−1Σ(D)→ Rk, f ∈ K(X)

in which Rk is equipped with its Euclidean topology. This topology might be called as well
the Hahn-Euclidean topology.

In this paper we provide an explicit description of the tropical topology. This is obtained
as a consequence of the tropical weak approximation theorem proved below.

1.5. Refined tropicalization and tropical weak approximation. Let D be an SNC
divisor on X. For each cone σ ∈ Σ(D) and for each i ∈ Iσ, consider a local equation zi for
Di around ησ. The family {zi}i∈Iσ provides a system of local parameters for the local ring

ÔX,ησ obtained as the completion of OX,ησ at its maximal idea. Each element of the local ring

ÔX,ησ admits an admissible expansion in the terminology of [JM12], that is, an expansion of
the form

(1.3) f =
∑

β∈ZIσ
+

cβz
β, cβ ∈ ÔX,ησ ,

in which the right hand side is a convergent series with each coefficient cβ either zero or a

unit element in ÔX,ησ . (Here and in what follows, for β ∈ Zr with coordinates β1, . . . , βr, the

notation zβ stands for the product zβ1
1 . . . zβr

r .)

The support of the admissible expansion is the set of all β ∈ ZIσ
+ such that cβ is not zero.

Although an element f has generally infinitely many admissible expansions, we will show
later that the set of initial terms of f is invariant under the choice of the expansion and the
local parameters. Here an initial term is an element of the support which is minimal for
the partial order ≤cw in which a vector x = (xi)i∈Iσ is less than or equal to y = (yi)i∈Iσ
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if coordinate-wise we have xi ≤ yi, i ∈ Iσ. We denote the initial terms of f by Aσ
f . Note

that the terms in Aσ
f form an antichain for the partial order ≤cw , that is any pair of distinct

elements in Aσ
f is incomparable relative to ≤cw . The antichain Aσ

f determines the restriction

of trop(f)|σ, that is, we have

trop(f)(x) = min
β∈Aσ

f

⟨x, β⟩

where the notation ⟨x, y⟩, x, y ∈ RIσ , stands for the inner product
∑

i∈Iσ xiyi, and the mini-
mum is taken over the finite set Aσ

f .

For a rational function f ∈ K(X) which belongs to all the local rings ÔX,ησ , σ ∈ Σ, we thus
get the refined tropicalization of f given by the collection Af :=

{
Aσ

f

∣∣σ ∈ Σ(D) with f ∈
OX,ησ

}
, the family of antichains attached to f . Such a family verifies the following:

• (Coherence property) For any inclusion of faces τ ⊆ σ, we have the relation

Aτ
f = min

≤cw

pr
σ≻τ

(Aσ
f ).

Here pr
σ≻τ

is the projection map RIσ → RIτ .

Theorem 1.3 (Tropical weak approximation theorem). Let X be a smooth quasi-projective
variety over a field k and let D be an SNC divisor on X. Let A = {Aσ |σ ∈ Σ(D)} be a

family consisting of finite sets Aσ ⊂ ZIσ
+ such that

• each Aσ is an antichain for the partial order ≤cw , for σ ∈ Σ(D)
• the family A verifies the coherence property, that is for inclusion of faces τ ⊆ σ, we
have Aτ = min≤cw

pr
σ≻τ

(Aσ).

Then, there exists a rational function f ∈ K(X) such that for each cone σ of Σ(D), we have
f ∈ OX,ησ and Aσ = Aσ

f .

This result might be regarded as a tropical analogue of the weak approximation theorem
in number theory.

From the above theorem we deduce the following result.

Corollary 1.4. Let X be a smooth quasi-projective variety over a field κ and let D be a
simple normal crossing divisor on X. Any tropical function F on the support of the dual cone
complex Σ(D) is the tropicalization of a rational function f ∈ K(X).

As a consequence of the above result and our analytic description of higher rank valuations
as multidirectional derivatives of tropical functions, we infer that both the Hahn-Berkovich
and tropical topology are intrinsic to the cone complex Σ(D), that is, they can be defined more
generally for any rational cone complex Σ. (The intrinsic nature of the two other topologies,
the ordered and the Euclidean, is obvious from the definition.)

The following theorem provides a description of the tropical topology. Let Σ be a rational

cone complex and suppose Σ̃ is a rational subdivision of it. Let k be a positive integer. A

set U ⊂ TCk−1Σ is called a Σ̃-open if U ∩ TCk−1σ is open in TCk−1σ with respect to the

Euclidean topology for every cone σ of Σ̃.

Theorem 1.5 (Characterization of the tropical topology). Notations as above, we have

(1) For each rational subdivision Σ̃ of Σ, the Σ̃-open sets of TCk−1Σ are open with respect
to the tropical topology.

(2) The union of all Σ̃-open sets, Σ̃ a rational subdivision of Σ, form a basis of opens sets
for the tropical topology.
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1.6. Variations of Newton-Okounkov bodies. The above spaces of valuations and the
tropical topology are the right topological spaces for the problem of understanding the vari-
ations of Newton-Okounkov bodies, as we explain now.

Let X be a smooth projective variety of dimension d and let L = O(E) be a big line bundle
over X. Consider the graded algebra

H• =
⊕

n≥0
Hn

where Hn := H0(X,O(nE)) is a finite dimensional κ-vector subspace of K(X).
Each valuation ν of rank d on K(X) gives rise to the corresponding Newton-Okounkov

body in Rd denoted by ∆ν and defined by

∆ν :=
⋃

n≥0

{
ν(f)

n

∣∣ f ∈ Hn

}
.

Let D be a simple normal crossing divisor on X and consider the tangent cone TCd−1Σ(D).

We denote by T̊Cd−1Σ(D) the subspace of TCd−1Σ(D) consisting of those valuations (via the
duality theorem) which are of rank d. Consider the space BC(Rd) of compact subsets of Rd

endowed with the Hausdorff distance. We get a map

∆: T̊Cd−1Σ(D) −→ BC(Rd)

(x;w) 7−→ ∆νx,w .
(1.4)

As an application of the materials presented above, we prove the following result.

Theorem 1.6. Notations as above, the Newton-Okounkov body map (1.4) is continuous when

T̊Cd−1Σ(D) is endowed with the tropical topology.

The proof of this theorem will be given in Section 7. The result implies that the possible
discontinuities with respect to the Euclidean topology which might appear in the variation
of Newton-Okounkov bodies are captured by tropical topology and its explicit description
provided in Theorem 1.5. Using the results of [LM09, Section 4.2] on the existence of a global
Newton-Okounkov body defined over the big cone, it is possible to extend this theorem to
a joint continuity of the variations of the Newton-Okounkov bodies when both the big line
bundle and the valuation vary, see Remark 7.6.

We note that among the four natural topologies on TCd−1Σ(D), tropical topology is the
only one for which this general statement holds. This can be verified through basic examples.

1.7. Spaces of higher rank valuations. Given a variety X over κ, the birational analyti-
fication of X of bounded rank k is the set

Xbir,k :=
{
ν : K(X)∗ → Rk | ν is a valuation

}

that we endow with the coarsest topology which makes continuous all the evaluation maps,
for any f ∈ K(X)∗,

evf : Xbir,k −→ Rk

ν 7−→ ν(f).

Here, we equip Rk with its Euclidean topology. Moreover, we define the following subspaces
of Xbir,k

Xℶ◦ ,k :=
{
ν ∈ Xbir,k | ν has a center in X

}

X ℶ◦,k :=
{
ν ∈ Xbir,k | ν does not have any center in X

}
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that we endow with the topology induced by that of Xbir,k. Recall that for a variety X and
a valuation ν : K(X)→ Γ, the center of ν, if it exists, is the unique point x ∈ X such that ν
is non-negative over OX,x and strictly positive over its maximal ideal.

Notice that Xbir,k = Xℶ◦ ,k ⊔ X ℶ◦,k and Xbir,k = Xℶ◦ ,k if X is proper. In the terminology
of Foster and Ranganathan [FR16b], the space Xbir,k coincides with the subspace of all
valuations defined over the generic point in the Hahn analytification of X endowed with
the extended Euclidean topology. Note that Xbir,1 coincides with the birational part of the
Berkovich analytification Xan of X. Moreover, the notation Xℶ◦ ,k is used in analogy to the
analytic space Xℶ of Berkovich [Ber96] and Thuillier [Thu07], where the circle is a reminder
that we are considering only the birational parts.

We can actually go further and introduce a flag of subspaces of Xbir,k called the centroidal
flag which interpolates between Xℶ◦ ,k and Xbir,k. This is done as follows. For 0 ≤ r ≤ k, we
consider the set

F rXbir,k :=
{
ν ∈ Xbir,k | projr(ν) has a center in X

}

where projr(v) is the composition of v with the projection Rk → Rr to the first k coordinates.
In other words,

F rXbir,k := proj−1r Xℶ◦ ,k.

This gives a decreasing filtration

Xbir,k = F 0Xbir,k ⊇ F 1Xbir,k ⊇ · · · ⊇ F kXbir,k = Xℶ◦ ,k.

For an SNC divisor D on the variety X, the space TCk−1Σ(D) endowed with its tropical
topology naturally fits inside Xℶ◦ ,k. As we will next explain, tangent cone bundles provide a
higher rank notion of skeleton for the above spaces of valuations.

1.8. Tangent cone bundles as higher rank skeleta. We start by recalling some basic
definitions in birational geometry. Let X be a smooth variety over κ. A log-smooth compact-
ification of X is a proper variety Y containing X as an open subvariety such that Y ∖X is a
simple normal crossing divisor on Y . A morphism between log-smooth compactifications Y ′

and Y is a morphism f : Y ′ → Y between the underlying varieties such that f−1(X) = X and
f |X is an isomorphism. The category of log-smooth compactifications of X will be denoted
by LSCX .

A compactified log-smooth pair is the data of a pair Y = (Y,D) consisting of a proper variety
Y and a simple normal crossing divisor D ⊂ Y together with a birational map φ : Y 99K X
such that the divisor D can be decomposed as D = D◦+D∞ where D◦ and D∞ do not have
any component in common, and such that

(i) the domain of definition of φ is Y ∖D∞, that is,

φ : Y ∖D∞ −→ X

is well-defined and Y ∖D∞ is the maximum open set with this property.
(ii) the pair (Y ∖ D∞, D◦|Y ∖D∞) is a log-smooth pair for X, i.e., φ|Y ∖D∞ is a proper

morphism from Y ∖D∞ to X and the restriction

Y ∖ (D◦ ∪D∞) −→ X ∖ φ(D◦)

is an isomorphism.

Morphisms between compactified log-smooth pairs can be defined in a natural way. The
category of compactified log smooth pairs will be denoted by CLSPX .

For a compactified log-smooth pair Y = (Y,D), we denote by Σ(Y) = Σ(Y,D) the dual
cone complex associated to the divisor D on Y . We denote by TCk−1Σ(Y) the corresponding
tangent cone bundle that we endow with the tropical topology.
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Given a compactified log-smooth pair Y = (Y,D) over X, as above, the decomposition

D = D◦ ∪D∞ gives the subcomplex Σ(D◦) inside Σ(Y) which we denote by Σ(Y
◦
).

The centroidal filtration of TCk−1Σ(Y) is by definition the filtration

F 0TCk−1Σ(Y) ⊇ F 1TCk−1Σ(Y) ⊇ · · · ⊇ F kTCk−1Σ(Y)

given for 0 ≤ r ≤ k by

F rTCk−1Σ(Y) :=
{(

x; (w1, . . . , wk−1)
)
∈ TCk−1Σ(Y)

∣∣ (x; (w1, . . . , wr−1)
)
∈ TCr−1Σ(Y

◦
)
}
.

We prove the following theorem.

Theorem 1.7. Notations as above, for each compactified log-smooth pair Y = (Y,D) over
X, there is a continuous retraction

r
Y

: Xbir,k −→ TCk−1Σ(Y).

Moreover, the deduced continuous map

r: Xbir,k −→ lim←−
Y∈CLSPX

TCk−1Σ(Y)

is a homeomorphism. In addition, the limit are compatible with the centroidal filtration on
the analytic spaces and on tangent cone bundles. That is, for each 0 ≤ r ≤ k, we get a
homeomorphism

F rXbir,k −→ lim←−
Y∈CLSPX

F rTCk−1Σ(Y).

We note that the above theorem shows that tangent cones with their tropical topology
should be regarded as the higher rank analogue of skeletons in non-archimedean geometry.
Also, remark that the theorem suggests that the space Xbir,k can be regarded as the tangent
cone TCk−1Xbir,1 of Xbir,1 in the Berkovich analytification Xan.

The statements of the above theorem hold as well in the case where the spaces in consid-
eration are equipped with the Hahn-Berkovich topology. Due to mixed nature of the tropical
topology, the arguments in the proof in the case of the tropical topology become more subtle.
In particular, we discover a somehow surprising Topology-Mixing Lemma 8.9.

1.9. Related work. In this final section, we make a comparison of our results with the
existing ones in the literature.

The contributions of this paper can be regarded as part of the recent attempts to generalize
the framework of tropical and non-archimedean geometry to higher rank valuations.

Analytification of varieties based on valuations has been developed in the pioneering works
of Berkovich [Ber12] and Huber [Hub94]. Both spaces are intimately linked with tropical
geometry, in the former by means of usual tropicalization and in the latter by means of adic
tropicalization [Fos16]. More recently, Kedlaya [Ked15] and Foster-Ranganathan [FR16b,
FR16a] introduced an alternative analytification directly linked to the one of Berkovich based
on higher rank valuations. This last point of view is similar to the one we have adopted as
the setting for formulating our results in this paper.

Higher rank tropicalization has been studied by Aroca [Aro10], Banerjee [Ban15], Foster-
Ranganathan [FR16b,FR16a], Kaveh-Manon [KM19a,KM19b], Escobar-Harada [EH22], and
Joswig-Smith [JS23]. Our work can be regarded as the geometric version of higher rank
tropicalization. A framework for higher rank polyhedral and tropical geometry related to the
set-up introduced in this paper will appear in the forthcoming paper [Iri23]. Tangent cone
bundles we introduce in this paper and their refinements play a central role in that work.
Higher rank inner products spaces and their associated Voronoi tilings are introduced in the
work [AN23a] and are used to describe metric degenerations of real and complex tori endowed
with a polarization.
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Geometric tropicalization in rank one has been studied by Hacking-Keel-Tevelev [HKT09],
Thuillier [Thu07], Abramovich-Caporaso-Payne [ACP15], and more recently by Ulirsch [Uli17]
and Gross [Gro18], among others.

A more general framework for tropicalization has been developed in the work of Lorscheid
on blueprints [Lor15], and in the works of Giansiracusa-Giansiracusa [GG16, GG14] and
Maclagan-Rincón [MR20]. Because of the level of generality in those works, higher rank
tropicalization can be treated using any of the former two frameworks. Tropicalization with
values in hyperfields is studied by Viro [Vir10], Jun [Jun21] and Jell-Scheiderer-Yu [JSY22].

The link between skeletons and tropicalizations in rank one has been thoroughly stud-
ied in the works of Gubler-Rabinoff-Werner [GRW17, GRW16], Macpherson [Mac20], and
Baker-Payne-Rabinoff [BPR16]. Since skeletons play a central role in connecting complex
and non-archimedean geometry, in the study of one-parameter families of complex manifolds,
we expect that higher rank analogues of skeleta introduced in this paper, and their polyhedral
counterparts further developed in [Iri23], will play a central role in the study of multiparame-
ter families of complex manifolds. A systematic study of multiparameter families of Riemann
surfaces is undertaken in the series of works [AN20,AN22,AN23b].

The link between tangent cones of dual cone complexes and higher rank valuations estab-
lished in the paper allows to illuminate the recent work of Kaveh and Manon [KM19a] on
Khovanskii bases. In that work, the authors show how to associate to prime cones appearing
in the tropicalization of subvarieties of affine spaces higher rank valuations on the coordinate
ring of the variety with a finitely generated semigroup. By the work of Gubler-Rabinoff-
Werner [GRW17, GRW16], a prime cone appearing in the tropicalization of a variety can be
viewed naturally in the Berkovich analytification of that variety. Moreover, a prime cone can
be embedded in a dual cone complex associated to a simple normal crossing divisor. In this re-
gard, the valuations defined by Kaveh and Manon are examples of quasi-monomial valuations
studied in this paper. Combined with the duality theorem, this allows to view Kaveh-Manon
valuations as points living in the tangent cone of appropriate dual cone complexes, giving
them an analytic description. We refer to [RW19,Bos21,BLMM17,BFF+18, IW20,EH22] for
further results on the connection between tropical geometry, toric degenerations and Khovan-
skii bases.

The origin of limit theorems goes back to the work of Zariski [Zar39,Zar44] on resolution of
singularities in dimension two and three using Riemann-Zariski spaces. For tropicalizations,
this has been shown in rank one by Payne [Pay09] and Foster-Gross-Payne [FGP14]. For geo-
metric tropicalizations, this appears in the work by Kontsevich and Tschinkel [KT02] (unpub-
lished), Jonsson-Mustaţă [JM12], Boucksom-Favre-Jonsson [BFJ16], and Boucksom-Jonsson
[BJ18]. We have been particularly inspired by the work of [JM12] in establishing our limit the-
orems. A higher rank version of [FGP14] has been obtained by Foster-Ranganathan [FR16b]
in the situation with the Hahn-Berkovich topology. Our limit theorem suggests the statement
of the limit theorem in [FR16b] should remain valid for tropicalizations also with respect to
the tropical topology of the space of higher rank valuations. Relative Riemann-Zariski spaces
are studied by Temkin [Tem11,Tem10]. We refer to the book of Fujiwara-Kato [FK13] for a
detailed discussion of Riemann-Zariski spaces and their applications in rigid geometry.

A version of the duality theorem for the valuative tree was proved by Favre and Jonsson
in [FJ04]. For curves over non-trivially valued fields, this theorem should be compared with
the description of tangent directions at points of type 2 in the Berkovich analytification as
valuations of rank two on the function field of the curve, a result which can be traced back
to Bosch-Lütkebohmert [BL85] and Berkovich [Ber12]. This is also the main ingredient in
Thuillier’s non-archimedean version of Poincaré-Lelong formula for curves [Thu05] and its
reformulation as a slope-formula by Baker-Payne-Rabinoff [BPR13].

Finally, let us mention that a version of the approximation theorem for curves for non-
trivially valued base fields is proved by Baker-Rabinoff [BR15]. We expect that our theorem
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should be true in the non-trivially valued case in any dimension and plan to come back to
this setting in a future work.

1.10. Organization of the paper. Here is the plan of the paper. In Section 2 we introduce
dual cone complexes endowed with the sheaf of tropical functions and their tangent cones.
We attach to a simple normal crossing divisor on a variety X its corresponding dual cone
complex and its tangent cone. In Section 3 we recall the definition of tropicalization of rational
functions, and explain how to attach a system of antichains to a rational function, leading to
a refinement of the definition of tropicalization.

Section 4 introduces quasi-monomial valuations of a given rank and studies their basic
properties. This section contains the proof of the duality theorem and an analytic description
of the monomial valuations in terms of directional derivatives along elements in the tangent
cones. Section 5 contains the proof of our approximation theorem. In Section 6, we study the
tropical topology on the tangent cone, and provide an explicit basis of this topology. Section 8
introduces several spaces of higher rank valuations on the function field of a smooth variety
over κ. The results are used in Sections 8.3, 9 and 10 to prove the continuity of the retraction
map and the limit formulae.

1.11. Acknowledgments. We would like to thank Sébastien Boucksom, Charles Favre, Alex
Küronya, Mirko Mauri and Enrica Mazzon for their constructive comments and remarks on
the first version of this paper. It was pointed to us independently by Sébastien Boucksom
and by Mirko Mauri and Enrica Mazzon that Corollary 5.4 can be alternatively obtained by
more direct methods.

We are grateful to Jérôme Poineau for his very careful reading of the manuscript and all the
suggestions which helped us improve the presentation. We especially thank Marco Maculan
for his involvement and all the discussions we had during the early stage of this work, and
for his helpful comments on the presentation. Finally, we thank Noema Nicolussi for ongoing
collaboration on higher rank non-archimedean and hybrid geometry, as well as for helpful
discussions and comments on the content of this paper.

Basic notations. Along the text we work with varieties over an algebraically closed field κ,
that is, integral schemes of finite type over κ. Points on varieties are not necessarily closed.

We use the notations R+ = {a ∈ R | a ≥ 0} and Z+ = {a ∈ Z | a ≥ 0}. For positive integer
d, we denote [d] := {1, . . . , d}.

In the following, we will denote by ≤cw the coordinate-wise partial order on ZI , that is,
given elements β, β′ ∈ ZI , we have β ≤cw β′ if and only if βi ≤cw β′i for each i ∈ I. Sometimes,
we only use ≤ if the partial order is understood from the context.

We write the symbol a≫ b to indicate that a is large enough compared to b.
For a ring R, we denote by R× the set of invertible elements of R.

2. Cone complexes and tangent cones

This section introduces the polyhedral geometry concepts used throughout the document.
This includes the notion of cone complexes, their sheaf of tropical functions and tangent
cones, as well as dual cone complexes associated with simple normal crossing divisors.

2.1. Cone complexes. All through this section, the letter N is used for a free Z-module of
finite rank, and M denotes the dual of N , that is M = N∨ := Hom(N,Z). We denote by NR
and MR the corresponding real vector spaces that are dual to each other. The duality pairing
between M and N is denoted by ⟨ , ⟩. Recall that a saturated sublattice of N is a subgroup
N ′ with the property that N ′R ∩N = N ′.

Definition 2.1 (Cones and cone complexes).
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ζ
σ η

Σ

τ

Figure 1. Example of a cone complex. 3-dimensional cones σ and η share
two 2-dimensional faces. Similarly, 2-dimensional cones τ and ζ share two
rays.

(1) A rational polyhedral cone in NR is a set of the form

σ =
{
x ∈ NR

∣∣ ⟨x, u1⟩ ≥ 0, . . . , ⟨x, uk⟩ ≥ 0
}

for some u1, . . . , uk ∈M = N∨. We say that σ is strictly convex if it does not contain
any line in NR. A face of σ is a non-empty subset of the form

τ = σ ∩
{
x ∈ NR

∣∣ ⟨x, u⟩ = 0
}

for some u ∈ N∨ non-negative over σ.

(2) A rational polyhedral cone complex with (weak) integral structure is a pair (Σ, |Σ|)
where |Σ| is a topological space and Σ is a family of closed subsets of |Σ| such that:
(a) Each σ ∈ Σ is enriched with a lattice Nσ and an identification of σ with a full

dimensional rational strictly convex polyhedral cone in Nσ,R.
(b) These identifications are compatible in the sense that for each element σ ∈ Σ,

faces of σ seen as a cone in Nσ,R correspond to elements τ of Σ. Under this
identification, the lattice Nτ is identified with a saturated sublattice of Nσ.

(c) As a set we have |Σ| = ⊔
σ∈Σ

◦
σ where

◦
σ is the relative interior of σ.

(d) The intersection of two elements in Σ can be written as a union of elements in Σ.

We call |Σ| the support of the cone complex, and the elements of Σ are called the cones or
faces of the cone complex. By an abuse of notation, we will only use Σ to refer to the pair

(Σ, |Σ|). For each cone σ, the lattice Nσ is called its underlying integral structure and we
identify σ with its image in Nσ,R.

(3) A cone of dimension one in Σ is called a ray and a cone of maximal dimension is called
a facet. The set of all rays of Σ (resp. of a cone σ in Σ) is denoted by Σ1 (resp. σ1).
More generally, for any integer k, we denote by Σk (resp. σk) the set of all faces of Σ
(resp. of σ) of dimension k.

⋄
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Convention. In what follows, a rational strictly convex polyhedral cone will be simply called
a cone as these are the only kind of cones we will deal with in this paper. Similarly, a rational
polyhedral cone complex with a (weak) integral structure will be called simply a cone complex.

Remark 2.2. Definition 2.1 resembles the notion of a fan used in toric geometry but it differs
from it in several ways. First, the lattices Nσ may not come simultaneously from a global
ambient lattice N . Also, condition (d) allows an intersection of two cones to be a union of
multiple faces instead of a single face as in the case of fans. In such a situation, the cone
complex will have parallel faces, that is, two different faces τ and σ in Σ with the same set of
rays τ1 = σ1. An example of a cone complex is given in Figure 1. ⋄
Definition 2.3 (Subdivision). A rational subdivision of a cone complex Σ is a rational cone

complex Σ̃ such that |Σ| = |Σ̃| and for each cone σ̃ ∈ Σ̃, there is a cone σ ∈ Σ such that
σ̃ ⊆ σ and Nσ̃ is a saturated sublattice of Nσ. ⋄

It follows from the definition that σ̃ is a rational cone in Nσ,R. Again, rational subdivisions
are the only ones appearing in this paper, so we drop sometimes the word rational and simply
talk about subdivisions.

2.2. Dual complexes.

Definition 2.4 (SNC divisor and stratum). Let X be a smooth variety and D a divisor on
it.

(1) The divisor D on X is called simple normal crossing, SNC in short, if
• D is reduced, and
• for each point x ∈ X, there is a Zariski neighborhood Ux of x and a regular

system of parameters z1, . . . , zr ∈ OX,x with r = codim{x} such that the zero
set of the product z1 . . . zj over Ux coincides with D ∩ Ux for some non-negative
integer j = jx ≤ r.

(2) Given an SNC divisor D on X, we can write D as a sum
∑

i∈I Di where Di are the
irreducible components of D. A connected component of an intersection of the form

DI :=
⋂

i∈I
Di

for some I ⊆ I is called a stratum of D.

⋄
Remark 2.5. Notice that each SNC divisor is a Cartier divisor. Moreover, the SNC condition
implies that each DI appearing above is smooth, and in particular, has disjoint irreducible
components, coinciding with its connected components. ⋄
Construction 2.6 (Dual complex). Given a divisor D =

∑
i∈I Di on a variety X we construct

its dual cone complex Σ(D) as follows. To each stratum S of D which is an irreducible
component of DI for a subset I ⊆ I, one associates a cone σS which is a copy of RI

+ ⊆ RI
with its natural integral structure given by the lattice ZI ⊆ ZI . If a stratum S is included
in another stratum T , then the subset I ⊆ I which corresponds to S should contain the
subset J ⊆ I which corresponds to T . In particular, one can naturally identify the cone σT
as a face of σS via the identification RI

+ ⊆ RJ
+, as the set of all points with zero coordinates

corresponding to elements of J ∖ I. The topological space |Σ(D)| is defined as the gluing of
all σS along these identifications and the set Σ(D) is given as the image of the family {σS} in

the space |Σ(D)|. Sometimes we use the notation Σ(X,D) to emphasize that D is a divisor
in X. ⋄
Proposition 2.7. The pair (Σ(D), |Σ(D)|) constructed above is a cone complex in the ter-
minology of Definition 2.1.
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Proof. This is straightforward. □

Notation 2.8. Notations as above, given a cone σ ∈ Σ(D), we denote by Sσ the associated
stratum. The generic point of Sσ is denoted by ησ. If the divisor is given by D =

∑
i∈I Di, we

denote by Iσ the subset I ⊆ I such that Sσ is a connected component of DI =
⋂

i∈I Di. ⋄
2.3. Tropical functions. We endow a cone complex Σ with its structure sheaf OΣ which is
the sheaf of tropical functions.

Definition 2.9 (Tropical functions and the structure sheaf). Let Σ be a cone complex with

an integral structure and let U be an open subset of |Σ|. A function

F : U → R
is called tropical if there is a rational subdivision Σ̃ of Σ such that for each σ ∈ Σ̃, the
restriction F |σ∩U is integral linear, i.e., viewing σ in Nσ,R, F |σ∩U coincides with the restriction
to σ ∩ U of an element in Mσ ⊆ N∨σ,R. The structure sheaf OΣ is defined as the one whose
sections on an open set U are given by the set of tropical functions on U . A tropical function
on Σ is a global section of OΣ. ⋄
Remark 2.10. Let X be a smooth variety and D an SNC divisor on X. As we will see
later, the tropicalization of a rational function on X is a tropical function on Σ(D), and any
tropical function is of this form. ⋄
2.4. Tangent cones. We now explain how to deal with tangent vectors in cone complexes.
We are specially interested in those that point inward the cone complex. We start by introduc-
ing them in the case in which the cone complex is a single cone and we glue this construction
to obtain the general case.

Definition 2.11 (The tangent cone).
(1) Let σ ⊆ NR be a cone and x ∈ σ. The tangent cone at x denoted by TCxσ is the set

of all w ∈ NR for which x + εw ∈ σ provided that ε > 0 is small enough.
(2) In the same setting, given an integer k ≥ 1, we introduce the k-tangent cone at x,

denoted by TCkxσ, as the set of all tuples w = (w1, . . . , wk) of vectors in (NR)k for
which we have the following property:

For any r ∈ [k] and for εi > 0, i ∈ [r], we have

x + ε1w1 + · · ·+ εrwr ∈ σ

provided that ε1 is sufficiently small and εj is sufficiently small with respect to εj−1
for 1 < j ≤ r. Equivalently, if for any small enough ε > 0, we have

x + εw1 + ε2w2 + · · ·+ εrwr ∈ σ.

(3) The k-tangent cone bundle is the set TCkσ :=
⊔

x∈σ TCkxσ. It comes with a natural

projection map TCkσ → σ and its elements are denoted by (x;w1, . . . , wk) or (x;w),
to make reference to the base point explicit.

(4) We can generalize these constructions to a cone complex Σ. A face map τ ↪→ σ gives
an inclusion TCkτ ↪→ TCkσ. Therefore, using the fact that

|Σ| = colim
σ∈Σ

σ

where the colimit is taken in the category of sets and goes over all the face maps of
Σ, we introduce the tangent cone bundle TCkΣ of Σ as

TCkΣ := colim
σ∈Σ

TCkσ.

The projection maps glue in a natural way to a projection

TCkΣ→ |Σ|.
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1

Figure 2. The 2-tangent cone bundle of a 2-dimensional cone represented via
the fibers of the chain of maps TC2σ → TCσ → σ.

⋄

The topology on TCkΣ will be discussed in more detail in Section 6. The next proposition
tell us that the tangent cone of a polyhedral complex remains invariant under subdivisions.

Example 2.12. The 2-tangent cone bundle of the cone σ = {(x, y) ∈ R2 | x, y ≥ 0} come
equipped with projections

TC2σ → TCσ → σ

whose fibers are represented in Figure 2. ⋄

Proposition 2.13. If Σ̃ is a subdivision of Σ, then TCkΣ = TCkΣ̃.

Proof. Each cone σ ∈ Σ becomes the support of the polyhedral complex σ̃ = {τ ∈ Σ̃ | τ ⊆ σ}.
It is enough to prove that TCkσ = TCkσ̃, or in other words,

TCkσ =
⋃

τ∈σ̃
TCkτ.

The inclusion ⊇ is clear as σ ⊇ τ implies TCkσ ⊇ TCkτ . The other inclusion can be
obtained by induction on k. For the base case, take k = 0 and consider TCkσ as |σ|. Now,
assume the inclusion for k − 1 and let us prove it for k.

If (x;w1, . . . , wk) ∈ TCkσ, then x + w1
n ∈ σ for n big enough, so (x + w1

n ;w2, . . . , wk) ∈
TCk−1σ. By the induction hypothesis, there is some τn ∈ σ̃, depending on n, such that

(x +
w1

n
;w2, . . . , wk) ∈ TCk−1τn.

As there are finitely many cones in σ̃, there is one τ on it such that τ = τn for infinitely many
n. Now x + w1

n → x ∈ τ , and then by convexity, if we take δ0, δ1 > 0 with δ0 + δ1 = 1, for
each ε1 ≫ · · · ≫ εk−1 > 0 small enough we have

δ0x + δ1(x +
w1

n
+ ε1w2 + · · ·+ εk−1wk) = x + δ′1w1 + · · ·+ δ′kwk ∈ τ.

By choosing δ0, δ1 appropriately we can obtain any δ′1 ≫ · · · ≫ δ′k > 0 small enough, hence
(x;w) ∈ TCτ which shows the inclusion we wanted. □
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3. Tropicalization of rational functions

We now recall how to tropicalize rational functions on a variety into tropical functions on
cone complexes. This is based on the idea that, given a point x in a variety X and a fixed set

of local parameters in OX,x at the point, the completion ÔX,x of the local ring at x becomes
isomorphic to a power series ring in the local parameters. This isomorphism allows to see each
rational function regular at x as a power series. We can then use the usual tropicalization
procedure with respect to the trivial valuation on the base field. Following this procedure,
given an SNC divisor D, we can use the local equations of its components as local parameters
to obtain for each rational function a tropical function over Σ(D).

3.1. Admissible expansions. The following notion is useful to understand power series

expansions directly in the ring ÔX,x. It is borrowed from [JM12].

Definition 3.1 (Admissible expansion). Let R be a complete regular local κ-algebra and
z1, . . . , zr with r = dim(R) a system of parameters for it. Given f ∈ R, an admissible
expansion for f is an expression of the form

(3.1) f =
∑

β∈Zr
+

cβz
β, cβ ∈ R,

in which the right hand side is a convergent series in which each coefficient cβ is either zero or
a unit on R. The support of the admissible expansion is the set of all β ∈ Zr

+ with cβ ̸= 0. ⋄

Here and in what follows, the notation zβ stands for the product zβ1
1 . . . zβr

r where β1, . . . , βr
denote the coordinates of β ∈ Zr.

Remark 3.2. We will be essentially interested in the case in which R is equal to the comple-

tion ÔX,x of the local ring of a point x in a smooth variety X. For technical reasons however
we have defined it in this generality (see the proof of Proposition 9.5). ⋄

Remark 3.3. An element f ∈ R has several admissible expansions and the support of these
admissible expansions may vary. As an example, the identity 1 = (1−zβ) ·1+1 ·zβ shows two
different admissible expansions with different supports for the constant function 1. Although
admissible expansions are not unique, they always exist and as we will see next, the minimal
terms of their supports form a uniquely determined set. ⋄

Proposition 3.4 (Existence of admissible expansions and uniqueness of the minimal elements
of the support). Notations as in Definition 3.1, consider an element f ∈ R.

(1) There is an admissible expansion for f .
(2) In the notation of (3.1), the set

Af := min
≤cw

{β ∈ Zr | cβ ̸= 0}

depends only on f and not on the choice of the admissible expansion.
(3) The set Af does not change if we change the local parameters z1, . . . , zr for some local

parameters z′1, . . . , z
′
r such that we have z′i = ziui for some unit ui ∈ R× for each

1 ≤ i ≤ r.

Remark 3.5. A slightly weaker version of this proposition is stated in [JM12], where it is
shown that the piecewise linear function defined by the admissible expansion is well-defined.
Note that it might happen that two power series with different sets of minimal elements give
the same piecewise linear function. The above proposition claims the uniqueness of minimal
elements in different admissible expansions of a given rational function. ⋄
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Proof of Proposition 3.4. (1) Denote by κ(R) the residue field of R. By Cohen structure
theorem [Coh46, Theorem 9], the ring R contains a coefficient field, that is, a field κ̃ ⊆ R

such that the projection map R → κ(R) restricts to an isomorphism κ̃
∼→ κ(R). Moreover,

this coefficient field induces a continuous isomorphism

(3.2) φ : κ(R)[[X1, . . . ,Xr]]
∼−→ R

which extends the isomorphism between κ(R) and κ̃ by sending Xi to zi. Writing φ−1(f) =∑
β∈Zr

+
cβXβ, we get an admissible expansion for f of the form

f =
∑

β∈Zr
+

φ(cβ)zβ.

(2) Notations as in (1), let f =
∑

β∈Zr
+
aβz

β be a second admissible expansion for f . Using

the isomorphism (3.2) above, we can see each aβ for β ∈ Zr
+ as a power series with coefficients

in κ(R), that is as

φ−1(aβ) =
∑

γ∈Zr
+

aβ,γX
γ ∈ κ(R)[[X1, . . . ,Xr]].

We infer that
∑

β∈Zr
+

cβX
β = φ−1(f) =

∑

β∈Zr
+

φ−1(aβ)X
β

=
∑

β∈Zr
+


 ∑

γ∈Zr
+

aβ,γX
γ


X

β =
∑

β∈Zr
+


 ∑

0≤cwγ≤cwβ

aγ,β−γ


X

β

which implies that cβ =
∑

0≤cwγ≤cwβ aγ,β−γ . Now if β is a minimal element with cβ ̸= 0, then

aγ,β−γ is nonzero for some γ ≤cw β, and therefore aγ is nonzero. Conversely, if β is minimal
among those β′ such that aβ′ ̸= 0, then we have on one side cβ = aβ,0, and on the other
side, we have aβ,0 = φ−1(aβ) ̸= 0 because aβ is a unit. Combined together, we have shown
that any minimal element in the support of one admissible expansion dominates a minimal
element in the support of the second. This proves the statement in the proposition.

(3) The last point is straightforward. □

Remark 3.6.
(1) Recall that a subset A of a partially ordered set is called an antichain if any pair of

distinct elements in A are not comparable in the partial order. It is not hard to prove
that an antichain in (Zr

+,≤cw) is necessarily finite. Since the sets Af considered above
are all antichains, we conclude that they must be finite.

(2) For f, g ∈ R, by manipulating admissible expansions, we can see that

min
≤cw

(
Af+g ∪Af ∪Ag

)
= min
≤cw

(
Af ∪Ag

)

min
≤cw

(
Af ·g ∪min

≤cw

(Af + Ag)
)

= min
≤cw

(
Af + Ag

)
.

⋄
Corollary 3.7. Any function f ∈ R admits an admissible expansion with finite support.

Proof. Let f ∈ R be an admissible expansion. By Proposition 3.4, f admits an admissible ex-
pansion f =

∑
β∈Zr

+
cβz

β. Rearranging terms, we can rewrite this in the form f =
∑

β∈Af
c̃βz

β

where each coefficient c̃β can be written in form c̃β = cβ +
∑

γ>cwβ c
′
γz

γ−β, for c′γ either 0 or
equal to cγ , and is still invertible. By Remark 3.6, the set Af is finite. □
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3.2. Conewise antichains associated to rational functions. Let D be an SNC divisor
on X. For each cone σ ∈ Σ(D) and for each i ∈ Iσ, consider a local equation zi for Di around

ησ. Then, the family {zi}i∈Iσ provides a system of local parameters for the local ring ÔX,ησ .
For a function f ∈ K(X) with f ∈ OX,ησ , σ ∈ Σ(D), we define the set

Aσ
f := min

≤cw

{β ∈ ZIσ | cβ ̸= 0}

for a given (and so for any) admissible expansion f =
∑

β∈Zr
+
cβz

β.

Definition 3.8 (Antichains attached to a rational function). Notations as above, for a ratio-
nal function f on X, we call the family Af :=

{
Aσ

f

∣∣σ ∈ Σ(D) with f ∈ OX,ησ

}
the family of

antichains attached to f . ⋄
Remark 3.9. In practice, we reduce to rational functions f which belong to all local rings
OX,ησ for σ ∈ Σ(D). In this case, the family of antichains has an element Aσ

f for any σ ∈ Σ(D).

Any more general rational function h on X can be written as the ratio h = f1/f2 of two such
rational functions, i.e., with f1, f2 belonging both to all the local ring OX,ησ for σ ∈ Σ(D). ⋄
Proposition 3.10 (Compatibility of the antichains). Let D be an SNC divisor on X. Fix a
cone σ ∈ Σ(D) and a face τ of σ. Consider the projection

pr
σ≻τ

: RIσ −→ RIτ

(xi)i∈Iσ 7−→ (xi)i∈Iτ .

For each f ∈ OX,ησ , we then have f ∈ OX,ητ and an equality of the form

Aτ
f = min

≤cw

(
pr

σ≻τ
(Aσ

f )
)
.

Proof. Consider the diagram

ÔX,ησ

OX,ησ

̂(ÔX,ησ

)
pτ

ÔX,ητ

ι3ι1

ι2 ι4

Here pτ is the prime ideal in ÔX,ησ generated by {zi | i /∈ Iτ} and each completion is taken
with respect to the maximal ideal. Moreover ι1 is the inclusion in the completion, ι2 and ι3
are the compositions of a localization with an inclusion into the corresponding completion,
and ι4 is obtained by functoriality by localizing ι1 at pτ and completing with respect to the
maximal ideal. This is a commutative diagram of κ-algebras.

Given an element f ∈ OX,ησ , by Corollary 3.7 we can find finite admissible expansions

ι1(f) =
∑

β∈ZIσ

aβz
β ι2(f) =

∑

γ∈ZIτ

bγz
γ

in OX,ησ and OX,ητ , respectively. We then get

ι3(ι1(f)) =
∑

β∈ZIσ

ι3(aβz
β) =

∑

γ∈ZIτ


 ∑

pr
σ≻τ

(β)=γ

ι3(aβz
β−γ)


 zγ(3.3)

ι4(ι2(f)) =
∑

γ∈ZIτ

ι4(bγ)zγ .(3.4)
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Now, we observe that hγ =
∑

pr
σ≻τ

(β)=γ aβz
β−γ /∈ pτ . Indeed, otherwise, we could construct

an admissible expansion for hγ with nonzero terms in some monomials supported in Iτ , and
then, these two different admissible expansions would have different set of minimal terms,
contradicting Proposition 3.4. Hence, the image of hγ by ι3 is invertible.

In this way, Equations (3.3) and (3.4) give us two admissible expansions for ι3(ι1(f)) =

ι4(ι2(f)) inside
̂(ÔX,ησ

)
pτ

. By Proposition 3.4 again, we get

min
≤cw

{
γ ∈ ZIτ

∣∣ ι4(bγ) ̸= 0
}

= min
≤cw

{
γ ∈ ZIτ

∣∣ ι3(
∑

pr
σ≻τ

(β)=γ aβz
β−γ) ̸= 0

}
.

Since ι3 and ι4 are both injective, we infer Aτ
f = min≤cw

(
pr

σ≻τ
(Aσ

f )
)
, as required. □

3.3. Tropicalization. We now define the tropicalization of rational functions.

Construction 3.11 (Tropicalization). Let X be a variety and let D ⊆ X be an SNC divisor.
Let σ ∈ Σ(D) and let x ∈ σ.
• For f ∈ OX,ησ , we define

trop(f)(x) := min
{
⟨x, β⟩ | β ∈ Aσ

f

}
.

• For two elements f1, f2 ∈ OX,ησ , we have

trop(f1f2)(x) = trop(f1)(x) + trop(f2)(x).

This allows to extend the above definition to an arbitrary g ∈ K(X). In this case, we write
g = f1/f2 for f1, f2 ∈ OX,ησ and define for each x ∈ σ

trop(g)(x) := trop(f1)(x)− trop(f2)(x).

• Finally, as trop(f) depends entirely on the family of antichains Af , by the compatiblity
shown in Proposition 3.10 above, trop(f)(x) is independent of the choice of the face of Σ(D)
which contains x. Hence, we obtain a well defined map

trop(f) : |Σ(D)| → R
which we call the tropicalization of f with respect to D. ⋄
Remark 3.12. In order to prove the second property, namely, that

trop(f1f2)(x) = trop(f1)(x) + trop(f2)(x)

for f1, f2 ∈ OX,ησ , let inx(Aσ
fi

) be the subset of Aσ
fi

consisting of all β with trop(fi)(x) = ⟨x, β⟩.
Then, we get inx(Aσ

f1f2
) ∩

(
inx(Aσ

f1
) + inx(Aσ

f2
)
)
̸= ∅. Combined with the second part of

Remark 3.6, this gives the result. ⋄
Proposition 3.13. The tropicalization of a rational function is a tropical function.

Proof. For σ ∈ Σ(D) and f ∈ OX,ησ the tropicalization trop(f)|σ is the minimum of finitely
many linear functions with integral coefficients. Therefore, this is an integral piecewise linear
function on σ. More generally, for any element f ∈ K(X), the tropicalization trop(f) can be
written as the difference of two integral piecewise linear functions over each cone σ, and so it
is itself integral piecewise linear on each cone. It follows that tropicalization of f is a tropical
function. □

4. Quasi-monomial valuations of higher rank

In this section, we define quasi-monomial valuations as certain Krull valuations attached
to a given SNC divisor. We study their basic properties and then relate their combinatorial
structure with the one of the dual complex in the case the values are taken in Rk with its
lexicographic order.



20 OMID AMINI AND HERNAN IRIARTE

4.1. Definition. We start by giving the definition in the more general setting of totally
ordered abelian group. The one important for us in this paper will be the additive group Rk

endowed with the lexicographic order ⪯lex that we sometimes simply denote by ⪯. This is
the order defined by x ⪯lex y iff x = y or there is an 1 ≤ i ≤ k such that xj = yj for j < i
and xi < yi. This ordered group has specific properties, depicted in the presence of its two
different natural topologies, which are exploited in this work.

Let (Γ,⪯) be a totally ordered abelian group and consider Γ+ = {α ∈ Γ | α ⪰ 0}. Let D

be an SNC divisor in a smooth variety X. To a given cone σ ∈ Σ(D) and a tuple α ∈ ΓIσ
+ ,

we associate the valuation νσ,α by defining its value first at an element f ∈ OX,ησ by

(4.1) νσ,α(f) := min
⪯

{∑
i∈Iσ βiαi ∈ Γ | β ∈ Aσ

f

}
.

By Remark 3.6 and the argument used in 3.12, it is straightforward to see that

νσ,α(fg) = νσ,α(f) + νσ,α(g), and

νσ,α(f + g) ⪰ min{νσ,α(f), νσ,α(g)}.
This shows that νσ,α verifies the properties of a valuation on OX,ησ and so uniquely extends
to a valuation on K(X), the fraction field of OX,ησ .

Definition 4.1 (Quasi-monomial valuations). Notations as above, the valuation νσ,α is called
the Γ-quasi-monomial valuation with respect to σ and α. The set of all Γ-quasi-monomial
valuations for a given cone σ ∈ Σ(D) is denoted by M Γ

σ (D). The set of all Γ-quasi-monomial
valuations coming from any cone of Σ(D) is denoted by M Γ(D).

When the ordered group is the additive group Rk endowed with the lexicographic order, for
a natural number k, we call the valuation νσ,α a quasi-monomial valuation of rank bounded

by k. We denote simply by M k
σ (D) and M k(D) the corresponding sets of quasi-monomial

valuations M Rk

σ (D) and M Rk
(D), respectively. For k = 1, we further simplify M 1

σ (D) and
M 1(D) to Mσ(D) and M (D), respectively. ⋄

In the rest of this paper, we will only consider quasi-monomial valuations of rank bounded
by k for some positive integer k.

Remark 4.2. The integer k used in the definition of the quasi-monomial valuation makes
reference to the rank of the codomain of the valuation. This should not be confused with
the Krull dimension of the valuation ring of νσ,α, neither with the rank of the value group of
the valuation, as we allow the value group νσ,α(K(X)) to be of rank strictly smaller than k.
The idea of studying valuations of different ranks all together, simultaneously, is motivated
from practical situations appearing in the study of multi-parameter degenerations of complex
varieties, see for example [AN20,AN22]. ⋄
4.2. The duality theorem. In this section, we provide a dual description of the set of
quasi-monomial valuations of rank bounded by k.

Recall that for a variety X and a valuation ν : K(X)→ Γ, the center of ν, if it exists, is the
unique point of X denoted by cν such that ν is non-negative over OX,x and strictly positive
over its maximal ideal. The center of a quasi-monomial valuation always exists.

Proposition 4.3. Let D be an SNC divisor on a variety X and let Γ be a totally ordered
abelian group. For σ ∈ Σ(D) and α ∈ ΓIσ

+ , consider the unique face τ of σ given by the rays

Iτ = {i ∈ Iσ | αi ≻ 0}. Let ατ = pr
σ≻τ

(α) be the element ΓIτ
+ whose coordinates are given by

those of α.
Then, we have νσ,α = ντ,ατ

. Moreover, the center of νσ,α exists and is equal to ητ .

Proof. The first assertion follows directly from Proposition 3.10 and the definition of valua-
tions νσ,α and ντ,ατ

given in (4.1). To prove the second, notice that ντ,ατ
(f) ⪰ 0 for each
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f ∈ OX,ητ . Moreover, ντ,ατ
(f) = 0 if and only if 0 ∈ Aτ

f , i.e., in the case f is invertible. This
shows that the center of ντ,ατ

is ητ . □

Consider now the case Γ = R. In this case, the elements of RIσ
+ can be naturally identified

with the points of σ. From the compatibility in the above proposition, we get a natural
bijection

(4.2) |Σ(D)| −→M (D)

obtained by sending a point x ∈ |Σ(D)| to the quasi-monomial valuation νσ,α ∈M (D) for σ
any cone of Σ(D) containing x, and α the coordinates of x in σ.

We now generalize this bijection to higher rank quasi-monomial valuations. First observe
that there is a natural projection map π : M k(D) −→ M (D) defined as follows. Take a

point α = (αi)i∈Iσ ∈ (Rk)Iσ+ . Each αi is an element of (Rk)+ = (Rk)⪰0 and we denote its

coordinates by αi = (α1
i , . . . , α

k
i ). Consider the projection to the first coordinate denoted by

an abuse of the notation by π and given by

π : (Rk)Iσ+ → RIσ
+ , π(α) = (α1

i )i∈Iσ .

The projection map π is then defined by

(4.3) π(νσ,α) := νσ,π(α)

over each cone σ in Σ(D). This allows to view M k(D) fibered over M (D).

Theorem 4.4 (Duality theorem). Notations as above, there is an isomorphism of bundles

over M (D) ≃ |Σ(D)|

(4.4)

M k(D) TCk−1Σ(D)

M (D) |Σ(D)|

ϕ

π

where:

• the map M (D)→ |Σ(D)| on the base is the inverse of the isomorphism (4.2), and
• the map ϕ is defined by a compatible family of maps

ϕσ : Mσ(D) −→ TCk−1σ, σ ∈ Σ(D).

For σ ∈ Σ(D), the map ϕσ is defined as follows. Take a point α = (αi)i∈Iσ in (Rk)Iσ+ ,

let x = π(α) = (α1
i )i∈Iσ ∈ RIσ

+ , and for each j = 2, . . . , k, define

wj−1 := (αj
i )i∈Iσ ∈ RIσ .

Then, the point (x;w1, . . . , wk−1) belongs to TCk−1σ, and we set

ϕσ(νσ,α) := (x;w1, . . . , wk−1).

Remark 4.5. In a nutshell, the proof of the duality theorem reduces to the following state-
ment in coordinates. A real matrix A ∈ Matk,r(R) has columns in (Rk)+, with respect to

the lexicographic order on Rk, if and only if the family (At
•,1;A

t
•,2, . . . , A

t
•,k), given by the

columns of the transpose At of A, belongs to the tangent cone TCk−1
(

(R+)r
)

. This justifies

the name given to the theorem. ⋄
Proof of Theorem 4.4. We verify that each ϕσ is a bijection. Let σ be a cone in Σ(D). By
definition, an element (αi)i∈Iσ ∈ (Rk)Iσ gives a valuation νσ,α in the domain of ϕσ provided

that for each i ∈ Iσ, the vector αi belongs to (Rk)+, that is, it is non-negative with respect
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to the lexicographic order. Denoting by (α1
i , . . . , α

k
i ) the coordinates of αi, this means that

for each i ∈ Iσ, we must have

Either, α1
i > 0, Or, α1

i = 0 and α2
i > 0, Or, α1

i = α2
i = 0 and α3

i > 0

. . . Or, α1
i = · · · = αk−1

i = 0 and αk
i ≥ 0.

(4.5)

On the other hand, for a collection of vectors x, w1, . . . , wk−1 in RIσ , by definition, the
family (x;w1, . . . , wk−1) belongs to TCk−1σ if and only if we have

x ∈ σ and

x + ε1w1 ∈ σ for ε1 > 0 small enough, and

x + ε1w1 + ε2w2 ∈ σ for ε1 ≫ ε2 > 0 small enough, and

...

x + ε1w1 + · · ·+ εk−1wk−1 ∈ σ for ϵk−2 ≫ εk−1 > 0 small enough.

(4.6)

Specifying the collection of vectors x,w1, . . . , wk−1 to the ones given in the statement of
the theorem, the conditions in (4.6) above can be rephrased as follows. For each i ∈ Iσ,

α1
i ≥ 0 and

α1
i + ε1α

2
i ≥ 0 for ε1 > 0 small enough, and

α1
i + ε1α

2
i + ε2α

3
i ≥ 0 for ε1 ≫ ε2 > 0 small enough, and

...

α1
i + ε1α

2
i + · · ·+ εk−1α

k
i ≥ 0 for εk−2 ≫ εk−1 > 0 small enough.

(4.7)

Clearly, Conditions (4.5) and (4.7) are equivalent, and we infer that φσ is a bijection.
Now to conclude, note that the family of maps {ϕσ}σ is compatible with the descriptions of

M k(D) and TCk−1(D) as the unions M k(D) =
⋃

σ M k
σ (D) and TCk−1Σ(D) =

⋃
σ TCk−1σ,

respectively, and so they can be glued together to define a map ϕ : M k(D) → TCk−1Σ(D).
Since each ϕσ is a bijection, so is ϕ. □

4.3. An analytic description of quasi-monomial valuations. We now explain how to
understand higher quasi-monomial valuations from an analytic point of view, directly from
tangent vectors, by taking directional derivatives. This leads to a description of the inverse
ϕ−1 of the map ϕ appearing in the Duality Theorem.

We need to introduce the notion of derivative of a function with respect to a tuple of inward
tangent vectors in the tangent cone.

Definition 4.6 (Directional derivatives). Given a polyhedral complex Σ and a function

F : |Σ| → R, the derivative of F at a point x ∈ |Σ| along an inward vector w ∈ TCxΣ is
the limit

DwF (x) := lim
ε→0+

F (x + εw)− F (x)

ε
,

whenever this limit exists. More generally, we inductively define the derivative of F at a point
x ∈ |Σ| and with respect to the tuple w = (w1 . . . , wk) ∈ TCkxΣ as the limit

(4.8) D(w1,...,wk)F (x) := lim
ε→0+

D(w1,...,wk−1+εwk)F (x)−D(w1,...,wk−1)F (x)

ε
,

whenever the directional derivatives D(w1,...,wk−1+εwk)F (x), for ε ≥ 0 small enough, and the
above limit exist.
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In the case these limits exist for all points x ∈ |Σ| and w ∈ TCkΣ, we denote by DkF the
corresponding derivative function from TCkΣ→ Rk+1. This is the function which to a point
x ∈ |Σ| and w = (w1, . . . , wk) ∈ TCkxΣ associates the point

DkF (x;w) :=
(
F (x), Dw1F (x), D(w1,w2)F (x), . . . , D(w1,...,wk)F (x)

)
∈ Rk+1.

⋄
Remark 4.7. We make a few remarks.

(1) When (w1, . . . , wk) ∈ TCkΣ, the points (w1, . . . , wk−2, wk−2 + ϵwk−1), for ε ≥ 0 small
enough, all belong to TCk−1Σ. So the limit in 4.8 is well-posed.

(2) At a smooth point x ∈ |Σ|, when x lies in the relative interior of a facet of Σ, and

for a function F : |Σ| → R which is smooth on a neighborhood of x, the definition

of DwF (x) for w = (w1, . . . , wk) ∈ TCkΣ coincides with the evaluation at the k-
tuple of tangent vectors w of the k-th derivative of F at x. The definition is thus a
natural extension to the case where F is not necessarily a smooth function and x is

an arbitrary point of |Σ|.
⋄

The following proposition provides an alternative way of computing DwF (x) when it exists.

Proposition 4.8. Consider a point x ∈ Σ and a tuple w ∈ TCkxΣ. Let F : Σ → R be a
function for which DwF (x) exists. Then we have

DwF (x) = lim
εk→0+

. . . lim
ε1→0+

1

ε1 · · · εk

(
F (x+ε1w1 + · · ·+ ε1 · · · εkwk)

− F (x + ε1w1 + · · ·+ ε1 · · · εk−1wk−1)
)
.

Proof. For k = 1, this is the definition of DwF (x). The general case can be obtained by
induction. □

In this paper we are mainly interested in directional derivatives of tropical functions. In
this case the derivatives always exist as the following proposition shows.

Proposition 4.9. For any piecewise linear function F : |Σ| → R and any k ≥ 0 the derivative
DkF exists. Moreover, if F is linear on a cone τ such that the point (x,w) ∈ TCkΣ, w =
(w1, . . . , wk), belongs to TCkτ , then we have

(4.9) DkF (x;w1, . . . , wk) = (Fσ(x), Fσ(w1), . . . , Fσ(wk)).

Proof. Let Σ̃ be a subdivision of Σ such that F is linear on each cone σ ∈ Σ̃. By Propo-
sition 2.13, we have that TCkΣ =

⋃
σ∈Σ̃ TCkσ, so given (x;w) ∈ TCkΣ(D), there is a cone

σ ∈ Σ̃ such that (x;w) ∈ TCkσ. Denote by Fσ the linear function which is equal to the
restriction of F to σ. A direct calculation shows that DkF (x;w) exists and is given by (4.9),
the which proves the proposition. □

We now come back to the tropicalization of rational functions and its link to quasi-monomial
valuations. From the very definition, it is clear that we can retrieve rank one quasi-monomial
valuations by evaluating tropical functions at their corresponding point, that is, given f ∈
K(X)∗ and x ∈ |Σ(D)|, if νx denotes the valuation corresponding to x under the map in
(4.2), then

νx(f) = trop(f)(x).

The following result extends this relation to higher rank quasi-monomial valuations.
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Theorem 4.10 (Quasi-monomial valuations using derivatives). Let k ∈ N be a natural num-
ber. Given (x;w) ∈ TCk−1Σ(D), consider the evaluation map

ν(x;w) : K(X)∗ −→ Rk

f 7−→ Dktrop(f)(x;w).

Then νx;w is a well-defined function and it coincides with the valuation ϕ−1(x;w) given by
the Duality Theorem 4.4.

Proof. Fix a point (x;w) ∈ TCk−1Σ and let σ be a face of Σ(D) containing x such that
(x;w) ∈ TCk−1σ. Then, by definition, for any f ∈ OX,ησ , we have

(4.10) trop(f)(x) = min
{
⟨x, β⟩

∣∣β ∈ Aσ
f

}
.

As trop(f) is piecewise linear, there is a subdivision Σf of Σ(D) such that trop(f) is linear

on each face of Σf . By Proposition 2.13, there is a cone τ in Σf such that (x;w) ∈ TCk−1x τ .
Let βτ ∈ Aσ

f be the exponent such that trop(f)(y) = ⟨y, βτ ⟩ for any y ∈ τ . By Proposition
4.9, we get

νx;w(f) =
(
⟨x, βτ ⟩, ⟨w1, βτ ⟩, . . . , ⟨wk−1, βτ ⟩

)
.(4.11)

We now show that νx;w = ϕ−1(x;w), that is, νx;w = νσ,α where α = (αi)i∈Iσ and αi =

(xi, wi
1, . . . , w

i
k−1).

Note that here for i ∈ Iσ, xi and wi
j are the i-th coordinate of x and wj , respectively. So with

our previous notation, we have αj
i = xi for j = 1 and αj

i = wi
j−1 for j = 2, . . . , k.

To show the above claim, note that for any f ∈ Oησ , we have

vσ,α(f) = min
⪯lex

{∑

i∈Iσ

αiβi | β ∈ Aσ
f

}

=
∑

i∈Iσ

αiβα,i =
∑

i∈Iσ

(
xi, wi

1, . . . , w
i
k−1

)
βα,i =

(
⟨x, βα⟩, ⟨w1, βα⟩, . . . , ⟨wk−1, βα⟩

)

(4.12)

where βα is an exponent in Aσ
f which gives the minimum in the first equation above, and βα,i

is the i-th coordinate of βα for i ∈ Iσ. We thus need to prove that the two expressions in
(4.11) and (4.12) are equal.

We will prove this by induction. The first entry in both expressions (4.11) and (4.12)
coincide as they are both equal to trop(f)(x). Assuming the two expressions have the same
j-entries for all 1 ≤ j ≤ ℓ− 1, we will prove that the ℓ-entries are also equal. The first ℓ− 1
entries being equal,

⟨x, βτ ⟩ = ⟨x, βα⟩, ⟨w1, βτ ⟩ = ⟨w1, βα⟩, . . . , ⟨wℓ−1, βτ ⟩ = ⟨wℓ−1, βα⟩,(4.13)

we infer that

⟨x + ε1w1 + · · ·+ ε1 · · · εℓwℓ, βτ ⟩
= trop(f)

(
x + ε1w1 + · · ·+ ε1 · · · εℓwℓ

)

= min
⪯lex

{
⟨x + ε1w1 + · · ·+ ε1 · · · εℓwℓ, β⟩

∣∣β ∈ Aσ
f

}

⋆
= min
⪯lex

{
⟨x + ε1w1 + · · ·+ ε1 · · · εℓwℓ, β⟩

∣∣β ∈ Aσ
f

such that ⟨x, β⟩ = ⟨x, βτ ⟩, ⟨wj , β⟩ = ⟨wj , βτ ⟩ for 1 ≤ j ≤ ℓ− 1
}

= ⟨x + ε1w1 + · · ·+ ε1 · · · εℓwℓ, βα⟩.
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Here, in
⋆
= we used the fact that to minimize ⟨x + ε1w1 + · · · + ε1 · · · εℓwℓ, β⟩ for β ∈ Aσ

f

and for ε1 ≫ ε2 ≫ . . . εℓ > 0 small enough, we need to first minimize ⟨x, β⟩, then minimize
⟨w1, β⟩ and so on. By the hypothesis of our induction, βτ does exactly this as it behaves
like βα in those entries. From this equality, using Equation (4.13), we infer the equality
⟨wℓ, βτ ⟩ = ⟨wℓ, βα⟩, as required.

This proves that νx;w(f) = νσ,α(f) for all f ∈ OX,ησ . Using the relation trop(f/g) =
trop(f) − trop(g) for two elements f, g ∈ OX,ησ , we finally conclude that νx;w(f) = νσ,α(f)
for all f ∈ K(X)∗ and the theorem follows. □

4.4. Flag valuations. In this section, we discuss an alternative way for getting valuations of
higher rank on X based on flags of subvarieties, and explain the relation to our constructions
above. More details on valuations associated to flags of subvarieties can be found in [LM09,
KK12], where they are used to define Newton-Okounkov bodies.

Consider a flag of subvarieties

F : F0 ⊋ F1 ⊋ · · · ⊋ Fk

where F0 = X, and for each 1 ≤ ℓ ≤ k, Fi is a smooth irreducible subvariety of Fℓ−1 with
codimX(Fℓ) = ℓ.

Under these hypotheses, each Fℓ defines a discrete valuation ordFℓ
over the function field of

Fℓ−1. We choose a uniformizer tℓ for ordFℓ
. Using these orders of vanishing, we can construct

a higher rank valuation on K(X) as follows.

Proposition 4.11. Notations as above, consider the map

νF : K(X)∗ → Rk

f 7→ (ordF1(f1), ordF2(f2), . . . , ordFk
(fk))

(4.14)

where f1 = f and fℓ+1 is the restriction of fℓ · t
−ordFℓ

(fℓ)

ℓ to Fℓ+1 viewed in the function field
K(Fℓ+1). This is a rank k valuation which is independent of the choice of uniformizers tℓ.

Given a nonempty SNC divisor D =
∑

i∈I Di, we can define a flag of subvarieties if we
fix an ordered sequence of components Di1 , . . . , Dik of D, for i1, . . . , ik ∈ I with non-empty
intersection, and an irreducible component S of the intersection Di1 ∩ · · · ∩Dik . In this case,
we set F0 = X and for each 1 ≤ j ≤ k, we define Fj as the unique irreducible component of
Di1 ∩ · · · ∩Dij which contains S. Then we have automatically Fj ⊊ Fj−1.

Since D is SNC, each Fj is a smooth connected subvariety of codimension one inside Fj−1,
and we get a flag of subvarieties

(4.15) F : X = F0 ⊋ F1 ⊋ · · · ⊋ Fk = S

which verifies the hypothesis of Proposition 4.11.
We now prove that νF corresponds to a quasi-monomial valuation defined in terms of D.

For this let σ be the cone corresponding to the stratum Fk of D. This cone has rays indexed
by Iσ = {i1, . . . , ik} ⊆ I. Consider the standard basis ei1 , . . . , eir of Nσ which is contained in
σ where eij is the primitive vector of the ray corresponding to ij .

Theorem 4.12. Let F the flag on (4.15) and νF the valuation defined by Proposition 4.11.
Then νF = νx,w for (x;w) = (ei1 ; ei2 , . . . , eik) ∈ TCk−1Σ(D).

Proof. Without loss of generality, we can assume that Di1 ∩ · · · ∩Dik = {p} is a closed point
of X. Indeed, if this is not the case, we can extend the flag in 4.15 to a complete flag, by
adding, if needed, more components to the divisor D, and then work with this complete flag.
The result then follows by taking the projection to the first k components of the valuation.
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Now take z1, . . . , zk equations for Di1 , . . . , Dik around p. Using these elements, for each
1 ≤ r ≤ k, we get a restriction map (called as well reduction map in the literature)

resj : K(Fj−1) −→ K(Fj),

f 7−→ fz
−ordFj

(f)

j

∣∣
Fj
,

which satisfies resj(OFj−1,x) ⊆ OFj ,x.
The elements zj , . . . , zk give us a local system of parameters for the local ring OFj−1,x and

hence they induce an isomorphism ÔFj−1,x ≃ k[[zj , . . . , zk]].
In this way, we obtain an extension to the power series ring for resj as follows

OFj−1,x OFj ,x

ÔFj−1,x ÔFj ,x

k[[zj , . . . , zk]] k[[zj+1, . . . , zk]]

f =
∑

β aβz
β

(
z
−ordzj (f)
j

∑
β aβz

β
)
|zj=0

resj

≃ ≃

resj

Now, given f ∈ OX,x, if we write f =
∑

β aβz
β ∈ ÔX,x, then by Theorem 4.10, we have

νx,w(f) =
(
⟨ei1 , βα⟩, ⟨ei2 , βα⟩, . . . , ⟨eik , βα⟩

)

where βα ∈ Aσ
f is the exponent which minimizes the right hand side with respect to the

lexicographic order in Rk given in the proof of that theorem. On the other hand, we have by
definition

νF (f) =
(
ordz1(f1), ordz2(f2), . . . , ordzk(fk)

)

where f1 = f and fr = resr(fr−1).
Now notice that

ordz1(f) = min
{
⟨ei1 , β⟩

∣∣ β ∈ supp(f)
}

= min
{
⟨ei1 , β⟩

∣∣ β ∈ Aσ
f

}

=⟨ei1 , βα⟩.
This shows that the first coordinates of νF (f) and νx,w(f) are equal. Proceeding by induction,
suppose the first j coordinates of νF (f) and νx,w(f) are equal. We get

ordzj+1(fj+1) = ordzj+1(resj(fj))

= ordzj+1


z
−ordzj (f)
j

∑

β∈supp(fj)

aβz
β



∣∣∣∣∣∣
zj=0

= min
{
⟨eij+1 , β⟩

∣∣ β ∈ supp(fj) and ⟨eij , β⟩ = ⟨eij , βα⟩
}

=⟨eij+1 , βα⟩ (by the definition of βα).

This shows the equality between the j + 1-coordinates of νF (f) and νx,w(f). The valuations
are thus equal on OX,x, and so they coincide on K(X), as required. □

5. Tropical weak approximation theorem

The aim of this section is to prove the tropical weak approximation theorem.
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5.1. Statement of the theorem. Recall that a subset A ⊆ ZI
+ is called an antichain for

the partial order ≤=≤cw if any pair of distinct elements β, γ ∈ A are incomparable, that is,
β ̸≤ γ and γ ̸≤ β. By the well-quasi-ordering property of ≤cw , this implies A is finite.

Let Σ = Σ(X,D) be a dual cone complex. Using the notations previously introduced, for
a pair of faces τ ≺ σ of Σ, we denote by pr

σ≻τ
the corresponding projection map RIσ → RIτ .

Definition 5.1 (Coherent family of antichains associated to cones). Suppose for any cone σ,

we have an antichain Aσ ⊆ ZIσ
+ . We call the collection A = {Aσ |σ ∈ Σ(X,D)} coherent if

for any inclusion of faces τ ⊆ σ, we have the relation

Aτ = min
≤

pr
σ≻τ

(Aσ).

⋄
Theorem 5.2 (Tropical weak approximation theorem). Let X be a smooth quasi-projective
variety over a field k and let D be an SNC divisor on X. Let A = {Aσ |σ ∈ Σ(X,D)} be a
coherent family of antichains. There exists then a rational function f ∈ K(X) such that for
each cone σ of Σ(X,D), we have f ∈ OX,ησ and Aσ = Aσ

f .

Remark 5.3. Stronger versions of this theorem might be true. For example, given admissible

expansions fσ ∈ ÔX,ησ for each σ ∈ Σ(X,D) such that each fσ has only finitely many non-zero
terms, and such that for inclusion of faces τ ≺ σ, we have ισ≻τ (fσ) = fτ , one might expect
the existence of a rational function f ∈ K(X) such that f − fσ has an admissible expansion

in ÔX,ησ in which every monomial is divisible by a monomial in fσ. ⋄
A corollary of the theorem is the following.

Corollary 5.4 (Approximation theorem for tropical functions). Let X be a smooth quasi-
projective variety over a field k and let D be an SNC divisor on X. For any tropical function
F : Σ(X,D)→ R, there is a rational function f ∈ K(X) such that trop(f) = F .

The rest of this section is devoted to the proof of the above theorems. We first prove
Theorem 5.2 and then later explain how to deduce the above corollary from this result.

5.2. Proof of Theorem 5.2 in the toric case. It would be more instructive to first treat
the case of a toric variety with the arrangement of the corresponding toric divisors. In this
situation, we can drop the quasi-projectivity condition.

Let Σ be a unimodular fan of dimension d in the real vector space NR of the same dimension,
and let PΣ be the corresponding toric variety. Each ray ϱ in Σ gives the corresponding divisor
Dϱ in PΣ. By unimodularity assumption on Σ, the divisor D = ∪ϱ∈Σ1Dϱ is SNC.

Let σ be a cone in Σ, and denote by ϱ1, . . . , ϱd the rays of σ. Denote the rays of the dual
cone σ∨ by ζ1, . . . , ζd. Let n1, . . . , nd be the primitive vectors of ϱ1, . . . , ϱd and denote by
m1, . . . ,md the primitive vectors of the rays ζ1, . . . , ζd, respectively. Note that ⟨mj , ni⟩ = δi,j ,
where ⟨. , .⟩ denotes the duality pairing between N and M .

For each point a = (a1, . . . , ad) ∈ Aσ, consider the rational function

fσ,a :=
(χm1)a1 · · · (χmd)ad

(χm1 + · · ·+ χmd + 1)ℓ

for a large enough integer ℓ (to be determined later).
Let ϱ be a ray of Σ with primitive vector n ∈ N . The order of vanishing of fσ,a along the

component Dϱ of D is given by

ordDϱ(fσ,a) = ⟨a1m1 + · · ·+ admd, n⟩ − ℓ ·min{0, ⟨m1, n⟩, . . . , ⟨md, n⟩}.
In particular, taking ϱ = ϱj , j ∈ [d], we get ordDϱj

(fσ,a) = aj . Moreover, if ϱ is different

from ϱ1, . . . , ϱd, then, by duality, there exists j ∈ [d] such that ⟨mj , n⟩ < 0. Upon the choice
of ℓ, this imposes fσ,a to have a large order of vanishing along Dϱ.
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Consider now the rational function fσ in K(PΣ) defined as

fσ :=
∑

a∈Aσ

fσ,a =
∑

a=(a1,...,ad)∈Aσ

(χm1)a1 · · · (χmd)ad

(χm1 + · · ·+ χmd + 1)ℓ
.

In the completed local ring ÔPΣ,xσ we have the equality

(χm1)a1 · · · (χmd)ad

(χm1 + · · ·+ χmd + 1)ℓ
= (χm1)a1 · · · (χmd)ad ·


1 +

∑

k≥1
(−1)k(χm1 + · · ·+ χmd)k




ℓ

,

which gives an admissible expansion of fσ with respect to the local parameters χm1 , . . . , χmd

around ησ, the point of intersection of Dϱ1 , . . . , Dϱd .
From this, we see that Aσ

fσ,a
= {a}, and since Aσ is an antichain, it follows Aσ

fσ
= Aσ.

Now let τ be another facet and denote by {ρj}dj=1 its rays. They correspond to the compo-
nents Dρ1 , . . . , Dρd of D with the torus-invariant point ητ as the point of intersection. From
the preceding discussion, we infer that if ρj is not a ray of σ, then, choosing ℓ large enough,
we can ensure that fσ has a large order of vanishing along Dρj .

Since the order of vanishing of fσ along such a component Dρj is equal to the minimum
j-th coordinate of any element of Aτ

fσ
, we see that all the elements of Aτ

fσ
have large j-th

coordinates. On the other hand, on the intersection face δ = τ ∩ σ, we have

prτ≻δ(A
τ
fσ) = prσ≻δ(A

σ
fσ).

In particular, by the coherence of the collection Aσ, this shows that if ℓ is chosen to be
large enough, then any element in Aτ

fσ
dominates an element of Aτ , that is,

Aτ = min
≤

(
Aτ ∪Aτ

fσ

)
.

Now we choose ℓ large enough, and taking fσ as above for each facet σ of Σ, for generic
choices of λσ in the base field, we set

(5.1) f :=
∑

σ∈Σd

λσfσ.

We observe that for any facet τ , for any pair of rational functions h, g, and generic choice
of scalars λ, µ, we have

Aτ
λh+µg = min

≤

(
Aτ

h ∪Aτ
g

)
.

We thus infer that for any facet τ of Σ and for the function f defined in (5.1), we have

Aτ
f = min

≤


 ⋃

σ∈Σd

Aτ
fσ


 = Aτ

fτ = Aτ .

The result follows now by the coherence property which implies Aδ
f = Aδ for any face δ of Σ.

5.3. Proof of Theorem 5.2. We now treat the theorem in its full generality. In the fol-
lowing, we will use the following terminology borrowed from lattice theory concerning the
combinatorial structure of faces in a cone complex.

Definition 5.5 (The (multivalued) meet and join operations ∧ and ∨). Given two faces τ
and σ in a cone complex Σ, we denote by τ ∧ σ the set of all maximal common faces between
τ and σ. If τ and σ are faces of a cone ζ, we denote by τ ∨ζ σ the unique minimal face of
ζ that contains both τ and σ. Notice that if Σ does not have parallel faces, then τ ∧ σ is a
single cone and τ ∨ζ σ is independent of ζ. In this case, we denote this cone by τ ∨ σ. ⋄
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In the rest of this section we assume given an SNC divisor D =
∑

i∈I Di in X, and we
consider the dual cone complex Σ(X,D).

5.3.1. Adapted family of rational functions. Proceeding somehow similarly as in the proof of
the toric case, we will prove the existence of a family of rational functions with nice properties
depicted in the following theorem.

Theorem 5.6. Let σ be a face of Σ(X,D). There exists a rational function uσ ∈ K(X) with
the following properties:

(P1) uσ belongs to all local rings Ox,ηδ , for δ ∈ Σ(X,D), and is invertible in OX,ησ .
(P2) It has a zero along the divisor Dj for each j /∈ Iσ.
(P3) For any face τ of Σ(X,D) the following holds. If ζ ∈ τ ∧σ is a maximal common face

of τ and σ, then the restriction uσ |Sζ
of uσ on the stratum Sζ has a zero along all the

strata Sζ∨τϱj ⊆ Sτ for any j ∈ Iτ ∖ Iζ .

Definition 5.7 (Adapted family of rational functions). Given a dual cone complex Σ(X,D),
the collection of rational functions uσ, σ ∈ Σ(X,D), verifying the properties (P1), (P2), and
(P3) in the above theorem is called an adapted family of rational functions for the dual cone
complex. ⋄

In order to prepare for the proof of the above theorem, we start by stating two lemmas
concerning the existence of rational functions with prescribed regularity on a given finite set
of points.

Lemma 5.8. Let Y ⊆ X be a closed irreducible set and let x be a (non-necessarily closed)
point in X ∖ Y . Then there exists an irreducible divisor E ⊂ X which contains Y but not x.

Proof. Denote by ηY the generic point of Y . As x /∈ Y , we have OX,x ∖ OX,ηY ̸= ∅. Take
f ∈ OX,x∖OX,ηY . Then, ηY is contained in the indeterminacy set of f . Since X is smooth, the
indeterminacy set is the support of the negative part of div(f), and so there is a component
E of this negative part which contains Y but not x. □

Lemma 5.9. Suppose X is quasi-projective and let E ⊂ X be a reduced divisor. Given
points x1, . . . , xn in E, and a point x /∈ E, there is a rational function u which vanishes on
each component of E with order of vanishing one, which belongs to each local ring OX,xi,
i = 1, . . . , n, and which is invertible at x.

Proof. Taking a projective compactification, we can assume without loss of generality that
X is projective. Consider an ample divisor H not containing any of the points x, x1, . . . , xn
and not sharing any component with E. Then, for some large integer number n, the divisor
nH − E is very ample, and so base point free. Therefore, there is a section u of O(nH − E)
which does not vanish on x. Taking u generic, the corresponding rational function satisfies
all the required properties. □

We are now ready to prove the existence of adapted families of rational functions.

Proof of Theorem 5.6. We first apply Lemma 5.8 to each stratum Sτ not contained in Sσ to
get an irreducible divisor Eτ ⊂ X which contains Sτ but not Sσ. Let

E :=
∑

τ : Sτ ̸⊃Sσ

Eτ .

We now apply Lemma 5.9 to E, the points ητ for τ ∈ Σ(X,D) with Sτ ̸⊃ Sσ, that is, τ ̸≺ σ,
and the point ησ, which clearly does not belong to E. We infer the existence of a rational
function uσ in K(X) that vanishes on each component Eτ of E, which belongs to OX,ηδ for
any point δ ∈ Σ(X,Σ), and which is invertible in OX,ησ . We claim uσ verifies the claimed
properties (P1), (P2), and (P3).
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The first claim (P1) is clearly satisfied by the construction of uσ.
Also, notice that if j /∈ Iσ, then Sϱj = Dj . Since both Dj and Eϱj are irreducible, we must

have Eϱj = Dj . Since j /∈ Iσ, we have ησ /∈ Dj , and so by the choice of uσ, it should vanish
on Eϱj . This shows that uσ verifies Property (P2).

Finally, let ζ be a maximal common face of τ and σ, and let j ∈ Iτ ∖Iζ . By the maximality
of ζ, the cone ζ ∨τ ϱj is not a face of σ. This means ησ does not belong to Sζ∨τϱj , and so uσ
vanishes on Eζ∨τϱj . Notice as well that uσ ∈ OX,ηζ and Sζ∨τϱj ⊆ Eζ∨τϱj ∩ Sζ . It follows that
the restriction uσ |Sζ

of uσ to Sζ vanishes on Sζ∨τϱj , and so uσ verifies also (P3). □

5.3.2. Proof of the weak approximation theorem. Let σ be a face of Σ(X,D). Applying Lemma
5.9, we find a local equation zi for Di around ησ for each i ∈ Iσ with the additional property
that zi ∈ OX,τ for each cone τ that is not a face of σ. With this choice of local parameters,
we define

(5.2) fσ := uℓσ
∑

a∈Aσ

∏

i∈Iσ

zaii ,

for a large enough number ℓ which will be precised in a moment. Notice that fσ is defined in
each local ring OX,τ for any cone τ ∈ Σ(X,D). We will prove the following.

Proposition 5.10. Provided ℓ is large enough, fσ verifies the following two properties.

(1) The set Aσ
fσ

is equal to Aσ, and

(2) For each face τ of Σ(X,D) different from σ, we have

min
≤

(Aτ
fσ ∪Aτ ) = Aτ .

Using this, we can finish the proof of the approximation theorem.

Proof of Theorem 5.2. Let

f :=
∑

σ

λσfσ

where λσ is a generic choice of coefficients for each face of Σ(X,D). Applying the above
proposition, we get for each face τ of Σ(X,D),

Aτ
f = min

≤

⋃

τ

Aτ
fσ = Aτ .

In other words, f is the rational function stated in the theorem. □

We are left with the proof of Proposition 5.10.

Proof of Proposition 5.10. We use the notations preceding the proposition. By invertibility
of uσ in OX,ησ , the expression (5.2) gives an admissible expansion of fσ, and so we clearly
have Aσ

fσ
= Aσ. This shows the assertion (1) in the proposition.

Now, in order to prove Claim (2), let τ ̸= σ be a face of Σ(X,D), and take local parameters

wi for each Di around ητ , for i ∈ Iτ . The element uσ lives in OX,ητ and so in ÔX,ητ . Consider

an admissible expansion in ÔX,ητ for uσ

(5.3) uσ =
∑

β

cβw
β.

Property (P2) above implies that for each j ∈ Iτ ∖Iσ and for each α = (αi)i∈Iτ in the support
of (5.3), we should have

αj ≥ ordDj (uσ) ≥ 1.

More generally, we claim the following.

Claim 5.11. For each α in the support of the admissible expansion (5.3), there is a maximal
common face ζ of τ and σ such that for each j ∈ Iτ ∖ Iζ , we have αj ≥ 1.
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Proof. Let α be an element in the support of the admissible expansion (5.3), and consider
J =

{
i ∈ Iτ | αi = 0

}
. Denote by τJ the face of τ corresponding to J ⊆ Iτ . It will be enough

to show that τJ ⊆ σ. Indeed, in that case, τJ will be a common face of τ and σ, and so there
shall exist a face ζ ∈ τ ∧ σ which contains τJ . For any j ∈ Iτ ∖ Iζ , we will have αj ≥ 1, and
the claim will follow.

For the sake of a contradiction, suppose τJ is not a face of σ, and let ζ be a maximal
common face of σ and τJ . In particular, ζ ⊊ τJ , which implies that Iζ ⊊ J .

We have a projection

π : OX,ητ → OSζ ,ητ

h 7→ h|Sζ

that extends by continuity to a projection π : ÔX,ητ → ÔSζ ,ητ . Using this, we obtain an

admissible expansion for uσ |Sζ
in ÔSζ ,ητ in terms of local parameters wi|Sζ

for Sζ∨τϱi , for

i ∈ Iτ ∖ Iζ . This is obtained by applying the projection π to both sides of (5.3). Indeed, for

each β, the restriction cβ |Sζ
is still a unit in ÔSζ ,ητ , and so we get

uσ |Sζ
=

∑

β

cβw
β
|Sζ

,

which is an admissible expansion in ÔSζ ,ητ . In particular, since Iζ ⊆ J , and since αi = 0 for
all i ∈ J , we get that πIτ∖Iζ (δ) is in the support of the admissible expansion for uσ |Sζ

.
Take now j ∈ J ∖ Iζ . As uσ |Sζ

vanishes along the divisor Sζ∨τϱj , and a local equation for
this is given by wj |Sζ

, we should have that wj |Sζ
divides uσ |Sζ

inside OSζ ,ητ . This implies that

for any β in the admissible expansion uσ |Sζ
, we must have βj > 0. In particular, this gives

αj > 0 which contradicts the definition of J , so the claim follows. □

Let hσ =
∑

a∈Aσ

∏
j∈Iσ z

aj
j . We have fσ = uℓσhσ, from which we get the inclusion

Aτ
fσ ⊆ Aτ

uℓ
σ

+ Aτ
hσ
.

Moreover, we have
Aτ

uℓ
σ
⊆ Aτ

uσ
+ · · ·+ Aτ

uσ︸ ︷︷ ︸
ℓ times

.

Let now β be an element of Aτ
fσ

. It follows that we can write β as the sum of ℓ elements
in Aτ

uσ
and an element γ ∈ Aτ

hσ
.

By what preceded, we have for each j ∈ Iτ ∖ Iσ and each element α in Aτ
uσ

that αj ≥ 1.
It follows that we have βj ≥ ℓ for all j ∈ Iτ ∖ Iσ. For ℓ large enough, this is certainly larger
than the j-coordinate of any element in Aτ .

We now show how to control the j-coordinates of β for j ∈ Iτ ∩ Iσ. For this we write

β = α1 + · · ·+ αℓ + γ

for α1, . . . , αℓ ∈ Aτ
uσ

and γ ∈ Aτ
hσ

.

Applying Claim 5.11, for each αi, which is in the support of the admissible expansion (5.3)
of uσ, we infer the existence of a maximal common face ζi of τ and σ such that for each
j ∈ Iτ ∖ Iζi , we have αi

j ≥ 1. Here αi
j is the j-coordinate of αi.

Let r be the number of elements of τ ∧ σ. By the pigeonhole principle, there is a maximal
common face ζ of both σ and τ such that we have ζi = ζ for at least ℓ/r indices i ∈ [ℓ]. We
thus get for each j ∈ Iτ ∖ Iζ , the inequality

βj = α1
j + · · ·+ αℓ

j + γj ≥ ℓ/r + γj .

We infer again that, ℓ being chosen large enough, the j-coordinate of β is larger than the
j-coordinate of any element in Aτ provided that j is in Iτ ∖ Iζ .
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To finish the proof of Property (2), note that since ζ is a common face for τ and σ, we
have by the coherence property that

min
≤

pr
τ≻ζ

(Aτ
fσ) = min

≤
pr

σ≻ζ
(Aσ

fσ) and min
≤

pr
τ≻ζ

(Aτ ) = min
≤

pr
σ≻ζ

(Aσ).

Since Aσ
fσ

= Aσ, this shows that

min
≤

pr
τ≻ζ

(Aτ
fσ) = min

≤
pr

τ≻ζ
(Aτ ).

Hence, given that β ∈ Aτ
fσ

, there is an element β′ ∈ Aτ such that pr
τ≻ζ

(β) ≥ pr
τ≻ζ

(β′).

Moreover, by what we discussed above, choosing ℓ large enough, all the j-coordinates of β for
j outside Iζ will be also larger than the corresponding j-coordinates of β′. This shows that
we actually have β ≥ β′ and the claim in (2) follows, that is,

min
≤

(Aτ
fσ ∪Aτ ) = Aτ .

□

5.4. Proof of Corollary 5.4. The proof is based on the following proposition

Proposition 5.12. Any tropical function F on the cone complex Σ(X,D) can be written as
the difference of two tropical functions F1 and F2 such that the restriction of Fi to each cone
σ ∈ Σ(X,D) is convex and non-negative.

Proof. Let Σ be a subdivision of Σ(X,D) such that F is conewise linear on Σ. In order to
prove the existence of F1, F2, it will be enough to note that

(i) there exists a subdivision Σ′ of Σ and a non-negative tropical function G that is
strictly convex on the subdivision given by Σ′ of each cone of the original dual complex
Σ(X,D), and

(ii) if G is such a function, then for any large enough integer ℓ, the function F + ℓG is a
non-negative convex tropical function.

In fact, given this, we can write F = (F + ℓG) − ℓG and take F1 = F + ℓG and F2 = ℓG
which verify the convexity condition.

We omit the proof of (i) and only prove (ii). Let G be a tropical function on Σ(X,D)
which is conewise linear on Σ′ and strictly convex on the subdivision of each cone σ of Σ(X,D)
provided by Σ′. Since F is conewise linear on Σ′, it follows that for large enough integer ℓ,
F1 = F + ℓG remains strictly convex on each subdivided cone σ. Since ℓG is obviously convex
on the subdivided cones of Σ(X,D), the claim follows. □

Proof of Corollary 5.4. By the proposition above, there are tropical functions F1, F2 such that
each Fi is non-negative and convex on each facet of Σ(X,D) and F1 − F2 = F . Each Fi, for
i = 1, 2, is given by a coherent family of antichains Aσ

i in the sense that for each cone σ we
have

Fi(x) = min{⟨x, β⟩ | β ∈ Aσ
i }.

By approximation theorem, there are rational functions f1, f2 such that Aσ
fi

= Aσ
i for i = 1, 2

and fo each cone σ on Σ(X,D). We therefore get F = trop(f1/f2) and the theorem follows. □

6. Tropical topology on tangent cone bundles

In this section we study the tropical topology on the space of quasi-monomial valuations.
By the duality and approximation theorems proved in the previous sections, this coincides
with the coarsest topology on the tangent cone which makes the directional derivatives of
tropical functions all continuous. Therefore, we define the tropical topology in the general
framework of cone complexes and their tangent cones.
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6.1. Definition of the topology. In order to motivate what follows, we first observe that
tangent cone bundles inherit a natural Euclidean topology defined as follows.

Definition 6.1 (Euclidean Topology). Let Σ be a cone complex and k a non-negative integer
number. The Euclidean topology on the tangent cone TCkΣ is the topology defined by the
inclusion

TCkΣ ↪→
⋃

σ∈Σ
Nk

σ,R.

Here, the space on the right hand side is obtained by gluing the vector spaces Nk
σ,R. It is

endowed with the quotient topology induced by the Euclidean topology on Nk
σ,R, σ ∈ Σ. ⋄

This topology turns out however to be not properly adapted to the higher rank context.
This is suggested by the following example of a tropical function whose derivative is not
continuous with respect to the Euclidean topology.

Example 6.2. Let σ = R+ × R+ and consider the tropical function

F : σ −→ R
(x1, x2) 7−→ min{x1, x2}.

For the first directional derivative of F , we have

DF : TCσ −→ R2

((x1, x2); (y1, y2)) 7−→
{

(x1, y1) if either, x1 < x2, or, x1 = x2 and y1 < y2

(x2, y2) if either, x1 > x2 or, x1 = x2 and y2 < y1.

This map is not continuous with respect to the Euclidean topology. To see this, consider the
map

t 7→ DF ((t, 1− t); (y1, y2))

for y1 ̸= y2. This function has a discontinuity at t = 1
2 . ⋄

The analytic description of higher rank quasi-monomial valuations leads the following nat-
ural topology.

Definition 6.3 (Tropical topology). Let Σ be a cone complex and TCkΣ its tangent cone.
We consider Rk+1 with its Euclidean topology and define the tropical topology on TCkΣ as
the coarsest topology which makes all the maps

DkF : TCkΣ −→ Rk+1

continuous for any tropical function F : |Σ| → R. ⋄
Remark 6.4. In the case Σ = Σ(X,D) for a smooth quasi-projective variety X and an SNC
divisor D on X, the tropical topology on TCkΣ is the coarsest one making the directional
derivative Dktrop(f) a continuous function from TCkΣ→ Rk+1, for any f ∈ K(X)×. ⋄
6.2. Description of the topology. The aim of this section is to give a description of this
topology by introducing a basis of open sets. This will be based on the following definition.

Definition 6.5 (Σ̃-open sets). Let Σ be a cone complex and Σ̃ a rational subdivision of it.

A set U ⊂ TCkΣ is called a Σ̃-open set if for any cone σ ∈ Σ̃, the intersection U ∩ TCkσ is
open in TCkσ with respect to the Euclidean topology. ⋄
Example 6.6. In order to give an idea of the notion of Σ̃-open set, we consider the example
depicted in Figure 3. We have the positive orthant σ =

{
(x, y) ∈ R2

∣∣x ≥ 0, y ≥ 0
}

together

with a subdivision Σ̃ of it. The section ∆ = conv((0, 1), (1, 0)) gives a segment subdivided
in three smaller segments colored in red, blue and green. The tangent cone TC∆ can be
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written as the union of the tangent cones of each of these smaller segments. Drawing the

fibers vertically, we get the picture on the right hand side of Figure 3. A Σ̃-open set restricted
to TC∆ looks like the union of open sets one in the induced topology of each of the red, blue
and green parts. Note in particular that it is not necessarily an open set in the Euclidean
topology of TC∆.

⋄

(0, 1)

(1, 0)

Σ̃
TC∆

∆

U

(0, 1) (1, 0)

1
Figure 3. The restriction of a Σ̃-open set U to the set TC∆.

We have the following characterization of the tropical topology.

Theorem 6.7. Let Σ be a cone complex and consider its tangent cone TCkΣ for k a non-
negative integer number. Then,

(1) For each subdivision Σ̃ of Σ, the Σ̃-open sets of TCkΣ are open with respect to the
tropical topology.

(2) The union of all Σ̃-open sets for Σ̃ a rational subdivision of Σ forms a basis of open
sets for the tropical topology.

The proof of this theorem is given in the next section. We state the following corollary.

Corollary 6.8. Let Σ be a cone complex and TCkΣ its tangent cone endowed with the tropical
topology. Then,

(1) The tropical topology is second countable and is finer than the Euclidean topology. In
particular, it is both Hausdorff and normal.

(2) A set is dense in TCkΣ with respect to the tropical topology if and only if it is dense
with respect to the Euclidean topology.

(3) TCkΣ is not locally compact in general (in fact, as soon as k > 0 and the dimension
of Σ is at least two).

Proof. Let us start by (1). Given a countable basis U of Rk+1, we can construct a countable
subbasis of TCkΣ by considering all the open sets of the form DF−1(U) were F is a tropical
function and U ∈ U . This shows that the tropical topology is second countable. Moreover,

as any Euclidean open set is Σ̃-open for any subdivision Σ̃ of Σ, we get that the tropical
topology is finer than the Euclidean topology. Hence, it is Hausdorff and normal.

For point (2), it is enough to notice that for any subdivision Σ̃ of Σ and any Σ̃-open set U ,
there is an Euclidean open set V contained in U .
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For point (3), arguing by contradiction, suppose U is open and the closure U in the tropical
topology is compact. We then find an open set V ⊆ U such that V is open in the Euclidean
topology, as in (2). The closure V with respect to the tropical topology is then compact.
Denoting by V Trop and V Euc the set V endowed with its tropical and Euclidean topologies,
respectively, we see that the identity map

id: V Trop → V Euc

is continuous. Moreover, as V Trop is compact and V Euc is Hausdorff, the identity becomes
then a homeomorphism. This implies that the tropical and the Euclidean topologies should
agree on V . However, this is not possible if we have both k > 0 and dim Σ > 1 (we can choose

a subdivision Σ̃ of Σ subdividing V , and a Σ̃-open set W ⊆ V such that W ∩ TCσ is Σ̃-open
but not Euclidean open). □

6.3. Proof of Theorem 6.7. We adapt the following terminology in the sequel. For a cone
σ of a cone complex Σ, and a point (x;w) ∈ TCkΣ, by saying σ supports the point (x;w) we
mean the point (x;w) belongs to TCkσ.

We first prove the second point assuming the first.

Proof of (2). Let F : |Σ| → R be a tropical function and consider a rational subdivision Σ̃ of

Σ such that F is linear on each cone of Σ̃. Let V ⊂ Rk+1 be an open set for the Euclidean

topology. We show that
(
DkF

)−1
(V ) is Σ̃-open. This proves the result.

Let δ be a cone of Σ̃. By the choice of Σ̃, there is a linear function Fδ on Nδ,R such that

for any point (x;w) ∈ TCkδ, with w = (w1, . . . , wk), we have

DkF (x;w) = (Fδ(x), Fδ(w1), . . . , Fδ(wk)).

The intersection
(
DkF

)−1
(V ) ∩ TCkδ =

(
Fδ × · · · × Fδ︸ ︷︷ ︸

(k+1) times

)−1
(V ) ∩ TCkδ

is clearly an open set in TCkδ for the Euclidean topology, and the claim follows.
□

Proof of (1). Let Σ̃ be a rational subdivision of Σ and let U be a Σ̃-open set. We have to
show that U is open for the tropical topology of TCkΣ.

We first observe that if Σ̃′ is a subdivision of Σ̃, any Σ̃-open set is also Σ̃′-open. Therefore,

in order to prove the above claim, we can assume that Σ̃ is simplicial.
Take (x;w) ∈ U . We will prove that (x;w) is an interior point of U for the tropical topology

by explicitly constructing a neighborhood of (x;w) for the tropical topology included in U .

Let ζ be the minimal face of Σ̃ which supports (x;w). For each facet δ of Σ̃ we find a

rational subdivision Σ̃δ of Σ̃ with the following properties.

(a) Σ̃δ is simplicial.

(b) There is a unique facet in Σ̃ denoted by γ = γζ,δ which contains ζ and which is
contained in δ.

(c) For each pair (δ, ϱ) consisting of δ and a ray ϱ of δ, there is a tropical function F δ,ϱ

on |Σ| such that...

(1) F (δ,ϱ) is linear on each cone of Σ̃δ.

(2) Over the facet γ of Σ̃δ, we have F δ,ϱ|γ = χm|γ where m is the primitive element

in the ray dual to ϱ in δ∨ and χm is the linear function induced by this vector.
That is, F δ,ϱ takes value one on the primitive vector of ϱ and value zero on all
the rays of δ.
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For such a facet δ of Σ̃ which contains ζ, consider the function Φδ defined by the collection
of functions F δ,ϱ, ϱ a ray of δ,

Φδ := (F δ,ϱ)ϱ ray of δ : Σ→ Rdim(δ).

Let γ = γζ,δ be the facet of Σ̃(ζ) which contains ζ and which is contained in δ. By (c), the

linear functions F δ,ϱ for ϱ a ray of δ are linearly independent on γ, and so Φδ restricted to γ
is a homeomorphism to its image in Rdim(δ).

The directional derivative map

(6.1) Ψδ = (DkF δ,ϱ)ϱ ray of δ : TCkΣ→ (Rdim(δ))k+1

is a homeomorphism onto its image when restricted to TCkγ, when we put on TCkγ its
Euclidean topology. Indeed, restricted to TCkγ, Ψδ can be identified with the restriction to
TCkγ of the invertible linear map

(Φδ × Φδ × · · · × Φδ︸ ︷︷ ︸
(k+1) times

) : Rdim(δ)×(k+1) → Rdim(δ)×(k+1).

Hence, there is an open set Uδ ⊆ (Rk+1)dim δ such that its preimage under the map (6.1)
satisfies

Ψ−1δ (Uδ) ∩ TCkγ = U ∩ TCkγ.
Note that

Ψ−1δ (Uδ) =
⋂

δ,ϱ ray in δ

(
DkF (δ,ϱ)

)−1
(Uδ),

and so Ψ−1δ (Uδ) is an open set in the tropical topology and therefore a neighborhood of

(x;w) ∈ U . This proves that (x;w) is an interior point of the intersection
⋂

δ Ψ−1δ (Uδ) for δ
running over all facets which contain ζ, which is an open set for the tropical topology. Denote
by W this intersection. Note that we have W ∩ TCkγζ,δ ⊂ U ∩ TCkγζ,δ for each facet δ which
contains δ.

Let now Σ̃′ be a rational subdivision of Σ with the following properties:

• Σ̃′ is finer than Σ̃δ for all facets δ which contain ζ.

• there exists a tropical function G which is linear on each cone of Σ̃′, and which is

strictly positive on the relative interior of each cone τ of Σ̃′ which supports (x;w) and
which is non-positive everywhere else.

Then, (DkG)−1(R>0 × Rk) is an open set in the tropical topology, and moreover, it is

contained in the union
⋃

τ TCkτ where the union goes over all cones τ of Σ̃′ which support
(x;w). It follows from these constructions that

(x;w) ∈ (DkG)−1(R>0 × Rk) ∩
⋂

δ

Ψ−1δ (Uδ) ⊆
⋃

δ

U ∩ TCkδ

where δ runs over facets of Σ̃ which contain (x;w). We infer that U is a neighborhood of
(x;w) in the tropical topology, and the theorem follows. □

7. Variations of Newton-Okounkov bodies

Let X be a smooth projective variety of dimension d over an algebraically closed field κ,
with function field K(X). Consider a big line bundle L = O(E) on X with the corresponding
graded algebra

H• =
⊕

n≥0
Hn

where each Hn = H0(X,O(nE)) is a κ-vector subspace of K(X) of finite dimension.
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Consider the space BC(Rd) of compact convex subsets of Rd endowed with the Hausdorff
distance. Moreover, for an SNC divisor D in X we consider

T̊Cd−1Σ(D) =
{

(x;w) ∈ TCd−1Σ(D)
∣∣ x,w1, . . . , wd−1 are linearly independent

}
.

This set has an Euclidean and a tropical topology induced from the ones in TCd−1Σ(D).

Proposition 7.1. The subset T̊Cd−1Σ(D) consists of all those valuations in TCd−1Σ(D), via
the duality theorem, which are of full rank d.

Proof. By the duality theorem, using notations we used in Section 4.2, the transpose of
(x;w) is (α1, . . . , αd), and the image of the valuation ν(x;w) coincides with the subgroup of Rd

generated by α1, . . . , αd, that is,

ν(x;w)

(
K(X)×

)
= Zα1 + · · ·+ Zαd =: Λx;w

It follows that ν(x;w) is of full rank d if and only if the vectors α1, . . . , αd are linearly inde-
pendent, that is, if and only if x,w1, . . . , wd−1 are linearly independent. □

In this section, we prove the following theorem stated in the introduction.

Theorem 7.2. The map

∆: T̊Cd−1Σ(D) −→ BC(Rd)

ν 7−→ ∆x;w :=
⋃

n≥0

{
νx;w(f)

n
| f ∈ Hn

}
(7.1)

which attaches to each valuation its corresponding Newton-Okounkov body is continuous with
respect to the tropical topology.

The proof of this theorem goes in three steps. First, in Theorem 7.3, we give a formula
for the volume of the Newton-Okounkov body which shows that it depends continuously on
(x;w). Then, in Lemma 7.4 we show that the map (7.1) is lower semi-continuous. Finally,
thanks to the analytic tools introduced in Theorem 7.5, we can merge these two results
together to conclude the overall continuity.

Theorem 7.3. The volume of the Newton-Okounkov body is given by

Vol(∆x;w) = det(x;w) ·Vol(L)
/
d!

where det(x;w) denotes the determinant of the matrix whose columns are x,w1, . . . , wd−1 and
Vol(E) is the volume of the divisor E.

As a corollary, Vol(∆x;w) is a continuous function with respect to (x;w) ∈ T̊Cd−1Σ(D) in
the Euclidean topology, and therefore, it is also continuous in the tropical topology.

Proof. This follows from a variant of [Bou12, Théorème 0.2] combined with [Bou12, Théorème
0.1], a theorem of Kaveh and Khovanski [KK12], which relates the volume of the Okounkov
body associated to a valuation of rank d, when the image is Zd, to the growth of the dimensions
dimκ(Hn) as a function of n. The proof in the case in which the image of the valuation is
a full rank lattice in Rd, which is the statement of this theorem, and can be obtained in a
similar way. □

Lemma 7.4 (Lower-continuity). The map (7.1) is lower semi-continuous in the following

sense. Given (x;w) ∈ T̊Cd−1Σ(D), for any open set in Rd such that U ⊆ int(∆(x;w)), there is

a tropical neighborhood W ⊆ T̊Cd−1Σ(D) of (x;w) such that for each (x′;w′) ∈ W , we have
U ⊆ int(∆x′;w′).
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Proof. By definition, we have ∆x;w =
⋃

n≥0 ∆n(x;w) where

∆n(x;w) = conv-hull

(
νx;w(f)

n

∣∣ f ∈ Hn

)
.

Therefore, int
(
∆x;w

)
=

⋃
n≥0 int

(
∆n(x;w)

)
, and hence

U ∖
⋃

n≥0
int

(
∆n(x;w)

)
= ∅.

Now, by compactness, there exists a single m ≥ 0 such that U ∖ int
(
∆m(x;w)

)
= ∅. From

this, we deduce that

(7.2) U ⊆ int
(
∆m(x;w)

)
.

As the distance from U to ∂∆m is positive, the inclusion (7.2) remains true after a small
perturbation of ∆m. Now, the functions νx;w(f) = Trop(f)(x;w), f ∈ Hm, are continuous
with respect to the tropical topology. Since the vertices of ∆m move continuously, there is
a neighborhood W of (x;w) for which the convex hull of these points verify equation 7.2.
This convex hull is included in ∆m of the nearby valuations, and so, satisfies the property we
wanted. □

The following theorem gives a variational characterization of the Hausdorff convergence.
This is probably a well-known statement. Since we did not find a reference for it in the
literature, we give a proof here.

Theorem 7.5. Let (Cn)n ∈ BC(Rd) be a sequence of full dimensional compact convex subsets
of Rd. Then, we have the convergence

Cn
n→∞−→ C ∈ BC(Rd)

in the Hausdorff distance if and only if for each continuous function h : Rd −→ R with compact
support, we have ∫

Cn

h(x)dx
n→∞−→

∫

C
h(x)dx.

Proof. (⇒) If we denote by B(C; ε) the ε-neighbourhood of C, we have the inequality

Vol(Cn∆C) ≤ Vol(B(Cn; dH(Cn, C)) ∖ Cn) + Vol(B(C; dH(Cn, C)) ∖ C).

Here, Cn∆C is the symmetric difference of Cn and C. The left hand side goes to 0 as n goes
to infinity. We thus get Vol(Cn∆C) −→ 0. Hence we have the almost everywhere convergence
h · 1Cn → h · 1C , and so by the dominated convergence theorem the integrals converge.

(⇐) If Cn does not converge to C, passing to a subsequence if necessary, we get the existence
of ε > 0 such that the Hausdorff distance dH(Cn, C) ≥ ε for all n. We thus have

either, sup
x∈Cn

{d(x,C)} ≥ ε, or sup
y∈C
{d(Cn, y)} ≥ ε

happen infinitely many times.
In the first case, since Cn is compact for each n, there is an xn ∈ Cn for which the supremum

is attained. Let x′ be an accumulation point of (xn). Consider an open ball of the form B(y; ε)
contained in C. If for each continuous function h, the integrals above converge, by taking h as
a bump function supported exactly on B(y; ε), we get that Vol(B(y; ε)∖Cn)→ 0. Therefore,
since Cn and B(y, ε) are convex, for n big enough, we will get that Cn contains the ball
B(y; ε/2). This implies that for each such n, we have

Cn ∖ C ⊇ conv(B(y; ε/2) ∪ {x}) ∖ C.
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The set appearing in the right hand side is independent of n, and has nonempty interior.
Taking again a bump function supported in this set, we see that the integrals cannot converge
which gives a contradiction.

In the second case, for each n, there is a yn ∈ C for which the supremum is attained.
By compactness, and passing to a subsequence if necessary, we can assume that yn converge
to a point in C that we denote by y′. For n big enough, we have d(Cn, y

′) ≥ ε/2, as
d(Cn, y

′) ≥ |d(Cn, yn) − d(yn, y
′)|. It follows that B(y′; ε/2) ∩ C is disjoint from Cn for

infinitely many n. By taking h a bump function supported on B(y′; ε/2)∩C, we see that Cn

will not converge to C in a weak sense, which is a contradiction. □

We are now ready to prove our theorem on variations of Newton-Okounkov bodies.

Proof of Theorem 7.2. Let νj be a sequence of valuations in T̊Cd−1Σ(D) converging to ν ∈
T̊Cd−1Σ(D). Let h be a continuous function on Rd with compact support. Applying Theo-
rem 7.5, we need to prove

lim
j→∞

∫

∆(νj)
h(x)dx =

∫

∆(ν)
h(x)dx.(7.3)

Let ϵ > 0 be a small positive real number. We apply Lemma 7.4 to find an open subset U
with the property that

U ⊂ int(∆(ν)), Vol(∆(ν) ∖ U) = Vol(∆(ν))−Vol(U) ≤ ϵ, and U ⊂ int(∆(νj))

for j large enough. Using Theorem 7.3, we get the estimates

Vol(∆(νj) ∖ U) = Vol(∆(νj))−Vol(U) ≤ 2ϵ

provided that j large enough.
From this, we infer that
∣∣∣
∫

∆(νj)
h(x)dx−

∫

∆(ν)
h(x)dx

∣∣∣ =
∣∣∣
∫

∆(νj)
h(x)dx−

∫

U
h(x)dx +

∫

U
h(x)dx−

∫

∆(ν)
h(x)dx

∣∣∣

≤
∫

∆(νj)∖U
h(x)dx +

∫

∆(ν)∖U
h(x)dx ≤ 3ϵmax(h),

provided that j is large enough. Since this holds for any positive ϵ, we infer the statement (7.3),
and the theorem follows. □

Remark 7.6. It is possible to extend this continuity result to the variations of global Newton-
Okounkov bodies defined over the big cone, as in [LM09, Section 4.2], when the underlying

valuation varies. This means that over the product of the big cone and T̊Cd−1Σ(D), endowed
with the product topology, the variation of Newton-Okounkov bodies is continuous. ⋄

Continuity with respect to the tropical topology implies in many situations lower or upper-
semicontinuity with respect to the Euclidean topology. As an instance of this phenomenon,
we recall the explicit computations done in [CFK+17, Section 5.4], which concerns an example
in which the variation of Newton-Okounkov Bodies with respect to the Euclidean topology is
not continuous.

Example 7.7. Let X = P2 = ProjC[X,Y, Z] and L = O(1). Consider the divisor D = D1+D2

with D1 = V (X) and D2 = C is a general curve of fixed degree going through the point
[0 : 0 : 1] and tangent to V (Y). The above mentioned work studies the map

(7.4) s 7−→ ∆s = ∆(1:s),(0,1)(O(1)), for s ≥ 1.
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Notice that this map can be written as the composition of the curve

γ : [1,∞)→ T̊CΣ(D)

s 7−→
(
(1 : s), (0, 1)

)

with the Newton-Okounkov body map

∆: T̊CΣ(D) −→ BC(Rd).

Using the description of the tropical topology in terms of Σ̃-open sets, Σ̃ a refinement of Σ,
it is not hard to see that the topology on [1,∞) induced by the tropical topology on T̊CΣ(D)
is the topology generated by the intervals of the form [a, b), a < b, with a ∈ Q ∩ [1,∞) and
b ∈ [1,∞). Theorem 7.2 implies then that the map (7.4) is continuous with respect to this
topology. This translate into the fact that all limits of the form

lim
s→a−

∆s = ∆a with a ∈ Q ∩ (1,∞), and lim
s→b

∆s = ∆b with b ∈ [1,∞) ∖Q

exist in the usual Euclidean topology. In particular, the map is lower semi-continuous with
respect to the usual topology.

This general statement agrees with the computations given in [CFK+17] of the map (7.4)
in specific examples treated there. We briefly recall this.

If deg(C) = 1, the map is given by

s 7−→ conv-hull
(
(0, 0), (1, 0), (s, 1)

)

which is continuous in the Euclidean topology. On the other hand, if deg(C) = 2, the map is
given by

s 7→ ∆s =

{
conv-hull

(
(0, 0), (1, 0), (s, 1)

)
if 1 ≤ s < 2

conv-hull
(
(0, 0), (2, 0), (s/2, 1/2)

)
if 2 ≤ s

which has a unique discontinuity at 2, but is still lower semi-continuous.
If deg(C) ≥ 3, then, on the interval [1, 6 + 1

4) the map behaves as

∆s =





conv-hull
(
(0, 0), (1, 0), (s, 1)

)
if 1 ≤ s < 2

conv-hull
(
(0, 0), (2, 0), (s/2, 1/2)

)
if 2 ≤ s < 5

conv-hull
(
(0, 0), (5/2, 0), (2s/5, 2/5)

)
if 5 ≤ s < 6 + 1

4

which is again lower semi-continuous with discontinuities at rational points. Over the interval

[6 + 1
4 , (

1+
√
5

2 )4) the map can be still explicitly described. It presents infinitely many discon-
tinuities, in the Euclidean topology, of the above form. For more information we refer to the
original article. ⋄

8. Spaces of valuations and the retraction map

For a given variety X, we introduce several spaces of valuations and show how tangent
cones endowed with their tropical topology naturally fit inside them. Later on, in Section 10,
we show that these spaces can be recovered from these tangent cones.

8.1. Higher rank analytification and its centroidal filtration.

Definition 8.1. Given a variety X, we define the birational analytification of X of rank
bounded by k as the set

Xbir,k :=
{
ν : K(X)∗ → Rk

∣∣ ν is a valuation
}

endowed with the coarsest topology which makes continuous all the evaluation maps

evf : Xbir,k −→ Rk

ν 7−→ ν(f),
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for any f ∈ K(X)∗, Rk given its Euclidean topology. We define moreover the subspaces

Xℶ◦ ,k :=
{
ν ∈ Xbir,k

∣∣ ν has center in X
}

X ℶ◦,k :=
{
ν ∈ Xbir,k

∣∣ ν does not have center in X
}

of Xbir,k, and endow them with the topology induced by that of Xbir,k. ⋄
Remark 8.2. Notice that Xbir,k = Xℶ◦ ,k ⊔ X ℶ◦,k and Xbir,k = Xℶ◦ ,k if X is proper. In the
terminology of [FR16b], the space Xbir,k coincides with the subspace of all valuations defined
over the generic point in the Hahn analytification of X endowed with the extended Euclidean
topology. Moreover, the notation Xℶ◦ ,k is used in analogy with the analytic space Xℶ of
Berkovich [Ber96] and Thuillier [Thu07], where we have used a dot as a reminder that we are
considering only the birational parts. ⋄

We now introduce a flag of subspaces on Xbir,k which interpolate between Xℶ◦ ,k and Xbir,k.
Most of the constructions we will do in the following will be compatible or can be extended
to this centroidal filtration.

Definition 8.3 (The centroidal filtration). We define F 0Xbir,k := Xbir,k, and for 1 ≤ r ≤ k,
we define

F rXbir,k :=
{
ν ∈ Xbir,k

∣∣ projr(ν) has center in X
}

where projr(v) is the composition of v with the projection Rk → Rr to the first r coordinates.
In other words,

F rXbir,k = proj−1r Xℶ◦ ,r.

This gives a decreasing filtration

Xbir,k = F 0Xbir,k ⊇ F 1Xbir,k ⊇ · · · ⊇ F kXbir,k = Xℶ◦ ,k.

⋄
8.2. Inclusion of tangent cones in the analytification. Given an SNC divisor D on the
variety X, by Theorem 4.10 we get an inclusion map

ι : TCk−1Σ(D) ↪−→ Xℶ◦ ,k

(x;w) 7−→ νx;w.

Proposition 8.4 (The inclusion map). The above map ι induces a homeomorphism between
TCk−1Σ(D) endowed with the tropical topology and its image with the topology induced by
Xℶ◦ ,k. In the case X is proper, we can restrict the codomain to an inclusion

ι : TCk−1Σ(D) ↪−→ (X ∖D) ℶ◦,k.

Proof. By Proposition 4.3 the center of a quasi-monomial valuation defined by D is always
on D, so we can restrict to the codomain above in each case. Moreover, the fact that the
map induces a homeomorphism with its image is a direct consequence of the approximation
theorem. □

Regarding the center, the following result will be useful later. For a valuation ν in Xℶ◦ ,k,
we denote by cν the center of ν in X.

Proposition 8.5. Let X be a variety, then the map

cX : Xℶ◦ ,k −→ X

ν 7−→ cν

that assigns to each valuation its center in X is anticontinuous.
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Proof. The proof will use the Topology-Mixing Lemma 8.9 proved below. Let U = Spec (A) ⊆
X be an affine open set. Then for a valuation ν ∈ Xℶ◦ ,k, we have

cν ∈ U ⇐⇒ ν|
A

≥ 0 ⇐⇒ ν ∈
⋂

f∈A
f ̸=0

ev−1f [0,∞).

By Lemma 8.9 (applied to 1/f), the set ev−1f [0,∞) is closed. We infer that c−1X (U) =⋂
f∈A ev−1f [0,∞) is closed. If V is an arbitrary open set, then, since X is Noetherian, we have

a finite cover V =
⋃

i Ui by open affine subsets and so c−1X (V ) =
⋃

i c
−1
X (Ui) is closed. □

8.3. The retraction map. Let X be a smooth variety and D an SNC divisor on X. En-
dowing the tangent cone with the tropical topology, Proposition 8.4 gives an inclusion of
TCk−1Σ(D) as a topological subspace of Xℶ◦ ,k. In this section we construct a retraction of
Xℶ◦ ,k onto TCk−1Σ(D) for this inclusion, and study its basic properties. This generalizes the
picture from rank one to higher rank.

8.3.1. Definition of the retraction map. We start by recalling how to apply a valuation to a
divisor when the valuation has a center in a variety X.

Definition 8.6. Let E be a Cartier divisor in X. Given a valuation ν ∈ Xℶ◦ ,k with center
cν in X, we define ν(E) := ν(z) where z ∈ OX,cν is a local equation for E around the point
cν . ⋄

As two local equations differ by a unit, this is well-defined. We identify M k(D) with
TCk−1Σ(D) using the duality Theorem.

Definition 8.7 (Retraction). Let D be an SNC divisor on a variety X. The retraction to
TCk−1Σ(D) is the map

(8.1) rD : Xℶ◦ ,k → TCk−1Σ(D)

given by sending any valuation ν ∈ Xℶ◦ ,k to the unique pair (x;w) ∈ TCk−1Σ(D), with
corresponding quasi-monomial valuation νx,w, which verifies for any component Di of D, the
equality

(8.2) νx,w(Di) = ν(Di).

⋄

Proposition 8.8. The map rD verifies the following properties:

(1) It is well-defined.
(2) It is continuous.
(3) It is a retraction for the inclusion ι from Proposition 8.4, that is, rD ◦ ι = Id.

Proof. (1) and (3) are clear. The proof of (2) will be based on the Topology-Mixing Lemma 8.9
below, and will be given in Section 8.5. □

8.4. Topology-Mixing Lemma. We prove the following lemma.

Lemma 8.9 (Topology-Mixing Lemma). Let X be an algebraic variety and fix an element
f ∈ K(X)∗. The set

ev−1f

(
(−∞, 0]

)
=

{
ν ∈ Xℶ◦ ,k | ν(f) ⪯lex 0

}

is a closed set inside Xℶ◦ ,k.
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Remark 8.10. Notice that the interval (−∞, 0] in Rk constructed with the lexicographic
order is not closed with respect to the Euclidean topology. Therefore, the lemma does not
follow directly from the definition of the tropical topology on Xℶ◦ ,k. It might appear to be
somehow unexpected in this regard, as it happens to mix the Euclidean and ordered topologies
(where the name given to the result). The statement might not be true when the interval
(−∞, 0] is replaced by other half intervals. ⋄
Proof. This is equivalent to showing that

ev−1f

(
(0,∞)

)
=

{
ν ∈ Xℶ◦ ,k

∣∣ ν(f) ≻lex 0
}

is an open set inside Xℶ◦ ,k. For this, we will show that any element ν ∈ ev−1f (0,∞) is an

interior point of ev−1f (0,∞).

So let ν be such an element. First, notice that since ν(f) ≻ 0, we must have ν(f + 1) = 0.
This shows ν(f) ̸= ν(f + 1). Take now two disjoint open neighborhoods U and V of ν(f) and
ν(f + 1) = 0 in Rk, respectively, so that we have ν ∈ ev−1f (U) ∩ ev−1f+1(V ). For any valuation

ν̃ ∈ ev−1f (U) ∩ ev−1f+1(V ), we have ν̃(f) ̸= ν̃(f + 1). This implies that

0 = ν̃(1) = min
⪯lex

{
ν̃(f + 1), ν̃(f)

}
.

Since ν̃(f) ∈ U , and 0 = ν(f+1) /∈ U (by the choice of U and V ), we get ν̃(f) ̸= 0. This implies
that ν̃(f) ≻ 0 and so ν̃ ∈ ev−1f

(
(0,∞)

)
. We infer that the open neighborhood ev−1f (U) ∩

ev−1f+1(V ) of ν in Xℶ◦ ,k is contained in ev−1f

(
(0,∞)

)
, from which the result follows. □

8.5. Continuity of the retraction map. In this section, we prove part (2) of Proposi-
tion 8.8 by using the Topology-Mixing Lemma.

By the definition of the tropical topology, in order to prove the continuity of rD , it will be
enough to show that for each tropical function F : Σ(D)→ R, the composition

F := Dk−1F ◦ rD : Xℶ◦ ,k → Rk

is continuous. Using the approximation theorem, we can find a rational function f such that
F = trop(f) : Σ(D)→ R and then F = Dk−1trop(f) ◦ rD . We will fix such a function.

We will construct a sequence of covers of the form Xℶ◦ ,k =
⋃

iGi by finitely many closed
subsets, and reduce to showing the continuity of the restriction F|Gi

to each Gi.

We start by taking a finite affine open cover X =
⋃

j Uj with the property that each

component Di of D is a principal divisor over each Uj . We then have Xℶ◦ ,k =
⋃

i U
ℶ◦ ,k
i where

U ℶ◦ ,k
i :=

{
ν ∈ Xℶ◦ ,k

∣∣ cν ∈ Ui

}

is closed by Proposition 8.5. We thus get a finite closed cover. By the observation above,

it will be enough to prove that F is continuous restricted to each U ℶ◦ ,k
i . This means, we can

assume that X is affine and each divisor Di is principal and so of the form div(zi) = Di

for some regular function zi. Moreover, we can assume as well that the rational function f
defining F is a regular function on X.

Now, for each cone σ ∈ Σ(D), consider the set

Gσ :=
{
ν ∈ Xℶ◦ ,k

∣∣ cν ∈ X ∖
⋃

j /∈Iσ

Dj

}
.

That is, Gσ is the set of all valuations ν ∈ Xℶ◦ ,k whose center cν does not belong to any
component Di with i /∈ Iσ. As we have Gσ = c−1X

(
X ∖

⋃
i/∈Iσ Di

)
, by Proposition 8.5 this set

is a closed subset of Xbir,k.
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Given ν ∈ Xℶ◦ ,k, either, cν /∈ D, in which case we get ν ∈ Gσ for all facets σ of Σ(D). Or,
cν ∈ D, in which case, there exists a component Di such that cν ∈ Di. Taking σ the face of
Σ(D) whose associated stratum Sσ contains cν , we get that ν ∈ Gσ. This shows that

Proposition 8.11. The family Gσ, σ a face of Σ(D), forms a closed cover of Xℶ◦ ,k.

Hence, it is enough to prove the continuity over each Gσ. Without loss of generality, assume
that D1, . . . , Dr are all the components of D which contain ησ.

As f is regular, we have f ∈ Oησ . Consider now an admissible expansion

f =
∑

β

cβz
β ∈ OX,ησ

of f around the point ησ where div(zi) = Di. Then, F(ν) = min
{
ν(zβ)

∣∣β ∈ Aσ
f

}
for each

ν ∈ Gσ. In order to prove the continuity of F on Gσ, we further decompose Gσ as a finite
union of closed sets as follows. For each β ∈ Aσ

f , consider the set

Gσ,β :=
{
ν ∈ Gσ

∣∣F(ν) = ν(zβ)
}
.

We have

Gσ,β =
{
ν ∈ Gσ

∣∣ ν(zβ) ⪯lex ν(zβ
′
) ∀β′ ∈ Aσ

f

}
= Gσ ∩

⋂

β′∈Aσ
f

{
ν ∈ Gσ

∣∣ ν(zβ−β
′
) ⪯lex 0

}

which is closed by the Topology-Mixing Lemma applied to rational functions zβ−β
′
. We get

Proposition 8.12. The family Gσ,β, β ∈ Aσ
f , is a closed cover of Gσ.

We can now finish the proof of the continuity of the retraction map.

Proof of part (2) of Proposition 8.8. By the above discussion, we are reduced to show that F
is continuous over each Gσ,β. But this is clear since the restriction of F to Gσ,β equals evzβ ,
which is continuous by the definition. □

9. Log-smooth pairs

In the previous section, given a variety X we constructed a retraction from Xℶ◦ ,k to the
tangent cone TCk−1Σ(D) associated to an SNC divisor D on X. In this section, we will
introduce other instances for which we can construct dual complexes, tangent cones, and
corresponding retractions. The results will be of use in the subsequent section in order to
prove the limit formulae. We start by the following definition.

Definition 9.1. Let X be a smooth variety

(1) A log-smooth pair over X is the data of a pair Y = (Y,D) consisting of a smooth
variety Y and an SNC divisor D on Y together with a proper morphism φ : Y → X
such that the restriction

φ|Y ∖D
: Y ∖D −→ X ∖ φ(D)

is an isomorphism. The morphism φ is called the structure morphism of the log-smooth
pair.

Given log-smooth pairs Y′ = (Y ′, D′) and Y = (Y,D), a morphism Y′ → Y
between them is a proper morphism

f : Y ′ −→ Y

that commutes with the structure map of Y and Y ′ and such that Supp
(
f∗(D)

)
⊆

Supp
(
D′

)
.

We denote by LSPX the category of log-smooth pairs over X.
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(2) A log-smooth compactification of X is a proper variety Y containing X as an open
subvariety such that Y ∖X is an SNC divisor on Y .

A morphism between log-smooth compactifications Y ′ and Y is a morphism f : Y ′ →
Y between the underlying varieties such that f−1(X) = X and f |X is an isomorphism.
The category of log-smooth compactifications of X will be denoted by LSCX .

(Notice that for a morphism as above we have f−1(Y ∖X) = Y ′ ∖X.)
(3) A compactified log-smooth pair is the data of a pair Y = (Y,D) consisting of a proper

variety Y and an SNC divisor D ⊂ Y together with a birational map φ : Y 99K X
such that the divisor D can be decomposed as D = D◦ + D∞ where D◦ and D∞ do
not have any component in common, and such that
(i) the domain of definition of φ is Y ∖D∞, that is,

φ : Y ∖D∞ −→ X

is well-defined and Y ∖D∞ is the maximum open set with this property.
(ii) the pair (Y ∖D∞, D◦|Y ∖D∞) is a log-smooth pair for X, i.e., φ|Y ∖D∞ is a proper

morphism from Y ∖D∞ to X and the restriction

Y ∖ (D◦ ∪D∞) −→ X ∖ φ(D◦)

is an isomorphism.

A morphism Y
′ → Y between compactified log-smooth pairs Y

′
= (Y ′, D′) and

Y = (Y,D) is a proper morphism f : Y ′ → Y which commutes with the structure map
φ and such that f∗(D) ⊆ D′. Notice that in this case we have f∗(Y ∖X) = Y ′ ∖X.
The category of compactified log smooth pairs will be denoted by CLSPX .

(4) Given compactified log-smooth pairs Y
′

and Y, we say that Y
′

dominates Y if there

is a morphism Y
′ → Y, and we will denote this by Y

′ ≥ Y. Similar notations are
given for log-smooth pairs and log-smooth compactifications.

⋄
Proposition 9.2. The categories CLSPX , LSPX and LSCX are filtered. That is, for any
pair of objects Y1, Y2, there is a third object Y3 together with morphisms Y3 → Y1 and Y3 → Y2.

Proof. This is obtained by standard arguments using resolution of singularities. □

Definition 9.3. Given a compactified log-smooth pair Y = (Y,D), we denote by M k(Y) =
M k(Y,D) the set consisting of all quasi-monomial valuations of rank bounded by k on Y
relative to the divisor D, denote by Σ(Y) = Σ(Y,D) the dual cone complex to the divisor
D on Y and by TCk−1Σ(Y) its tangent cone. Similar notations will be used for log-smooth
pairs and log-smooth compactifications. ⋄
9.1. The retraction map revisited.

Proposition 9.4. Let X be a smooth variety.

(1) For each log-smooth pair Y = (Y,D) over X, there is a continuous retraction

rY : Xℶ◦ ,k −→ TCk−1Σ(Y).

(2) For each log-smooth compactification Y of X, there is a continuous retraction

rY : X ℶ◦,k −→ TCk−1Σ(Y ) ∖ {0}.
(3) For each compactified log-smooth pair Y = (Y,D) over X there is a continuous re-

traction

r
Y

: Xbir,k −→ TCk−1Σ(Y).
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Proof. (1) The structure map φ : Y → X is birational, so K(Y ) ∼= K(X) and we get Y bir,k ∼=
Xbir,k. Moreover, φ : Y → X is a proper map, and so by the valuative criterion of properness,
a valuation ν has a center in Y if and only if it has a center in X. Therefore, Y ℶ◦ ,k ∼= Xℶ◦ ,k.

The retraction rY is given by the composition

Xℶ◦ ,k φ∗
−→ Y ℶ◦ ,k r

D−→ TCk−1Σ(Y),

where rD is given by Definition 8.7 applied to the pair (Y,D). This proves the claim.
(2) If Y is a log smooth compactification of X, then D = Y ∖ X is an SNC divisor on Y .
Applying Definition 8.7 to this SNC divisor and using that Xbir,k = Y bir,k, we get a map

Xbir,k −→ TCk−1Σ(Y ).

Moreover, a valuation ν goes to 0 ∈ TCk−1Σ(Y ) iff ν is centered outside D, hence by restriction
we get a map

X ℶ◦,k −→ TCk−1Σ(Y ) ∖ {0}.
(3) As in (1), the retraction is given by the composition

Xℶ◦ ,k φ∗
−→ Y ℶ◦ ,k r

D−→ TCk−1Σ(Y)

where rD is Definition 8.7 applied to the divisor D inside Y and φ∗ is the pullback along the
rational map φ : Y → X. The claim follows. □

Proposition 9.5. The retractions from Proposition 9.4 are compatible in the sense that if
we have a morphism Y′ → Y of compactified log-smooth pairs, then we have

r
Y
◦ r

Y
′ = r

Y
.

Similar statements hold for log-smooth pairs and log-smooth compactifications.

Proof. Let ν ∈ Y bir,k be a valuation. Consider a compactified log-smooth pair Y
′ ≥ Y above

Y and denote by D′1, . . . , D
′
l all the components of D′ in Y ′. Let Di be a component of D in

Y . There exists a subset Ji ⊆ [l] such that π∗(Di) =
∑

j∈Ji njD
′
j .

Let hj be local parameters for D′j around the center c′ν of ν in Y ′. The product
∏

j∈Ji hj
is a local equation for Di around the center cν of ν in Y . We have

ν(Di) = ν(
∏

j∈Ji

h
nj

j ) =
∑

j∈Ji

njν(hj) =
∑

j∈Ji

njr
Y

′ (ν)(hj) = r
Y

′ (ν)(
∏

h
nj

j ) = r
Y

′ (ν)(Di).

This implies that the two valuations ν and r
Y

′ (ν) are mapped to the same point by the

retraction map r
Y

, that is, r
Y

(ν) = r
Y

(r
Y

′ (ν)). Since this holds for all valuations ν, the

compatibility of the retraction maps r
Y

and r
Y

′ follows. □

9.2. The retraction inequality. We finish this section by recalling the following useful
statement from [JM12] called the retraction inequality. This will be used in the next section.

Proposition 9.6 (Retraction inequality). Let Y = (Y,D) ∈ CLSPX be a compactified log-
smooth pair and let ν ∈ Xbir,k be a valuation with center a point x of Y . Then, for each
f ∈ OY,x we have the inequality

(9.1) ν(f) ⪰ (rY(ν))(f)

with equality when the zero set V (f) of f is included in D locally around x.

Proof. Denote by D1, . . . , Dm the components of D which pass through x and take local
equations zi for each component Di around x. The family {zi}mi=1 can be extended to a set of
local parameters {zi}ri=1 for Y at x. By Corollary 3.7 there is a finite admissible expansion

f =
∑

β∈Af

aβuβz
β.
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We get

ν(f) ⪰lex min
β∈Af

{
ν(aβuβz

β)
}
⪰lex min

β∈Af

{ν(zβ)} = (rY(ν))(f),

which is the stated inequality. Suppose now that V (f) ⊆ D locally around x. We can write
f in OY,x as f = u

∏m
i=1 z

ni
i for a unit u ∈ OY,x and non-negative integers ni. We conclude

ν(f) =

m∑

i=1

niν(zi) =
∑

i

nirY(ν)(zi) = (rY(ν))(f).

□

10. Limit formulae

Let X be a smooth variety over an algebraically closed field k. In this section we will see
how it is possible to reconstruct the space Xℶ◦ ,k of valuations with center inside X in terms of
the spaces TCk−1Σ(Y) for log-smooth pairs Y studied in the previous section (Theorem 10.1
below). We will give a similar result for the set X ℶ◦,k of valuations whose center is outside
X in terms of a limit TCk−1Σ(Y ) over log-smooth compactifications of X (Theorem 10.7
below). Similarly, we show how to reconstruct the centroidal filtration F rXbir,k in terms of
a centroidal filtration for TCk−1Σ(Y) over compactified log-smooth pairs Y.

10.1. Limit formula for Xℶ◦ ,k. The compatibility shown in 9.5 for the retraction maps
presented in Proposition 9.4 implies that there exist natural continuous maps

r : Xℶ◦ ,k −→ lim←−
Y∈LSPX

TCk−1Σ(Y)(10.1)

r : X ℶ◦,k −→ lim←−
Y ∈LSCX

TCk−1Σ(Y ) ∖ {0}(10.2)

r : Xbir,k −→ lim←−
Y∈CLSPX

TCk−1Σ(Y).(10.3)

The objective of this section is to prove the following theorem.

Theorem 10.1 (Limit formula). The maps 10.1, 10.2 and 10.3 above are all homeomor-
phisms.

It will be enough to construct an inverse for each of these maps. We treat the case of 10.3,
the proofs in the other cases will be essentially the same. The inverse for this map is

q : lim←−
Y∈CLSPX

TCk−1Σ(Y) −→ Xbir,k

s = [(x;w)]Y 7−→ νs

(10.4)

where νs is the valuation defined by

νs(f) = sup
Y

νs,Y(f), for every f ∈
⋂

Y

OX,ηs,Y
.

Here, νs,Y := νx,w for the element (x;w) in the position indexed by Y in the sequence s, and
ηs,Y is the center of νs,Y .

Proposition 10.2. The map 10.4 is well defined and is the inverse for the map 10.3.

Proof. We first note that if Y
′ ≥ Y, then rD(ν

s,Y
′) = νs,Y and therefore η

s,Y
′ ∈ {η

s,Y
′}.

Hence, the sequence of points ηs,Y is decreasing for the order given by specialization. There-

fore, it eventually becomes constant equal to some η. We get the equality
⋂

YOX,ηs,Y = OX,η.



48 OMID AMINI AND HERNAN IRIARTE

By Proposition 9.6 the sequence

[νs,Y(f)]Y

is increasing. Moreover, if we fix Y = (Y,D), a compactified log smooth pair, and we take

Y
′
= (Y ′, D′red) where (Y ′, D′) is an embedded resolution of singularities for V (f)∪D∞ ⊆ Y ,

we get that

V (f) ∪ Supp(D∞) ⊆ Supp(Dred).

For any Y
′′ ≥ Y

′
, we get D′′ ⊇ V (f). By the equality part of Proposition 9.6, we infer

ν
s,Y

′′(f) = ν
s,Y

′(f).

This means the sequence eventually becomes constant, and so, for f ∈ OX,η, the supremum
is attained. Moreover, Proposition 9.2 shows that given f, g ∈ OX,η, there is a compactified

log-smooth pair Y in which the sequences [νs,Y(f)]Y, [νs,Y(g)]Y, [νs,Y(f + g)]Y, [νs,Y(fg)]Y
are all constant at the same time from Y onwards. Hence, for this Y, we have

νs(fg) = νs,Y(fg) = νs,Y(f) + νs,Y(g) = νs(f) + νs(g).

Similarly, νs(f+g) ≥ min{νs(f), νs(g)}, so νs is a valuation. This shows that q is well defined.
We now show that q is the inverse of r. For this, we need to check that the composition

over each side gives the identity. This translates into the equalities

(1) [rY(νs)]Y = s for any s = [(x;w)]Y ∈ lim←−
Y∈CLSPX

TCk−1Σ(Y), and

(2) νs = ν for any ν ∈ Xbir,k with s = [rY(ν)]Y.

For the first equality, we have to prove that for any Y ∈ CLSPX we have rY(νs) = (x;w)

for (x;w) in the Y instance of the sequence s. In order to do this consider {zi}i local equations
for the components Di of the divisor D defining Y around the center of νs in Y . There is a

compactified log-smooth pair Y
′

= (Y ′, D′) in which we simultaneously have the equalities
νs(zi) = ν

s,Y
′(zi) for each i. In this case, we get rY(νs) = rY(ν

s,Y
′) and by the compatibility

of the retraction maps, we infer that rY(ν
s,Y

′) = (x;w).

For the second equality, it is enough to prove that for each f ∈ OX,η, we have νs(f) = ν(f).
This follows directly by the equality part in Proposition 9.6. □

Proposition 10.3. The map 10.4 is continuous.

Proof. The topology of Xbir,k is generated by open sets of the form

U = {ν ∈ Xbir,k | ν(f) ∈ A}
for A ⊆ Rk an Euclidean open set and f ∈ K(X)∗ a rational function. Hence, given a
fixed sequence s = [(x;w)]Y such that q(s) ∈ U , it is enough to find a neighborhood V of s

such that q(V ) ⊆ U . For this, take a compactified log-smooth pair Y and consider f = g
h

where g, h ∈ OY,cY (q(s)). Take a compactified log-smooth pair Y
′

by choosing an embedded
resolution of VY (g) ∪ VY (h) ∪D. Consider then

Vg =

{
t ∈ lim←−

Y∈CLSPX

TCk−1Σ(Y)
∣∣∣ νt,Y has center inside VY ′(g)

}
, and

Vh =

{
t ∈ lim←−

Y∈CLSPX

TCk−1Σ(Y)
∣∣∣ νt,Y has center inside VY ′(h)

}
.

By Proposition 8.5, for the center map TCk−1Σ(Y)→ Y ′, we see that both Vg and Vh are
open neighborhoods of s in the direct limit. By Proposition 9.6, for each t ∈ Vg ∩ Vh we have
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νt(g) = νt,Y(g) and νt(h) = νt,Y(h). We thus get νt(f) = νt,Y(f). Consider

V ′ =

{
t ∈ lim←−

Y∈CLSPX

TCk−1Σ(Y) | νt,Y(f) ∈ A

}
.

This is another open neighborhood of s in the direct limit. To conclude, note that for
V = Vg ∩ Vh ∩ V ′ and t ∈ V , we have

νt,Y(f) = νt(f) ∈ A

which shows that q(V ) ⊆ U . This proves the continuity. □

As a consequence of the limit formulae and weak factorization theorem, we get the following.

Corollary 10.4 (Density of flag valuations). For 1 ≤ k ≤ dimX, the valuations which are
equivalent to a flag valuation of rank k in some birational model of X are dense in Xbir,k.

Proof. The isomorphism (10.3) shows that the family of open sets of the form r−1
Y

(U) where

Y moves through CLSP, and U ⊆ TCk−1Σ(Y) is an open set in the tropical topology, form a
basis of Xbir,k. Hence, as r(U) ⊆ r−1

Y
(U), it is enough to show that r(U) contains a valuation

which is a flag valuation in some birational model of X. For this, take (x;w1, . . . , wk) ∈ U with
x,w1, . . . , wk rational and linearly independent. We will show that νx,w ∈ r(U) is equivalent

to a flag valuation. For this, take a rational subdivision Σ̃ of Σ containing x,w1, . . . , wk in
different rays of a single cone σ. By weak factorization theorem [W lo97], there is a way to

obtain Σ̃ as a sequence of blow-ups and blow-downs on the fans Σ. The same sequence of
blow-ups and blow-down gives rise to a birational model X ′ and a SNC divisor D′ ⊆ X ′ in
which νx;w is a diagonal scalar multiple of a flag valuation by 4.12. □

There are similar corollaries for Xℶ◦ ,k and X ℶ◦,k.

10.2. Refined limit formula. We define the centroidal filtration on tangent cones.

Definition 10.5 (Centroidal filtration). Given a compactified log-smooth pair Y = (Y,D)
over X, we have a decomposition of D as D = D◦ ∪D∞. This gives the subcomplex Σ(D◦)

inside Σ(Y) which we denote by Σ(Y
◦
).

We define the centroidal filtration of TCk−1Y to be the filtration

F 0TCk−1Σ(Y) ⊇ F 0TCk−1Σ(Y) ⊇ · · · ⊇ F kTCk−1Σ(Y)

given for 0 ≤ r ≤ k by

F rTCk−1Σ(Y) :=
{

(x;wk−1) ∈ TCk−1Σ(Y)
∣∣∣ (x;wr−1) ∈ TCr−1Σ(Y

◦
)
}
.

⋄
Remark 10.6. For i < j, property (x;wj) ∈ TCjΣ(Y

◦
) implies (x;wi) ∈ TCiΣ(Y

◦
). There-

fore, the sequence
(
F rTCk−1Σ(Y)

)
r

is indeed decreasing. Moreover, we have

F 0TCk−1Σ(Y) = TCk−1Σ(Y) and F kTCk−1Σ(Y) = TCk−1Σ(Y
◦
).

This is similar to the centroidal filtration on Xbir,k. ⋄
The limit formula for compactified log-smooth pairs in the previous subsection preserves

the centroidal filtrations, and we obtain a limit description of each term of the filtration.

Theorem 10.7. For each 0 ≤ r ≤ k, the isomorphism of Theorem 10.1 restricts to a home-
omorphism

F rXbir,k −→ lim←−
Y∈CLSPX

F rTCk−1Σ(Y).
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Proof. We first note that given (x;w) ∈ F rTCk−1Σ(Y), the center of the valuation projr(νx,w)
is the point ησ where σ is the smallest face such that (x,wr) ∈ TCrσ. Hence, if (x;w) ∈
F rTCk−1Σ(Y

◦
), then the center of νx,w is inside D◦ ⊆ X. This proves that the inclusion

TCk−1Σ(Y) ↪→ Xbir,k restricts to an inclusion F rTCk−1Σ(Y) ↪→ F rXbir,k

Moreover, since for any compactified log-smooth pair, the center of ν is a specialization of

the center of rY(ν), we see that for each pair Y
′ ≥ Y, the retraction map in 9.4 induces a

map

F rTCk−1Σ(Y
′
) −→ F rTCk−1Σ(Y)

and these maps are still compatible. This implies that once we take the inverse limit, we
obtain a natural map

r : F rXbir,k −→ lim←−
Y∈CLSPX

F rTCk−1Σ(Y).

On the other hand, the inverse map q defined in 10.4 also restricts to a map

q : F rTCk−1Σ(Y) −→ F rXbir,k.

Indeed, if s = [(x;w)]Y is a sequence of elements in F rTCk−1Σ(Y), the center of the elements

projr(νs,Y) in X are points ηs,Y with the property that η
s,Y

′ specializes ηY if Y
′

dominates

Y. X being Noetherian, the sequence [(ηs,Y)]Y is eventually constant, and hence ηs,Y is in

the projection of a stratum of D◦ onto X. The center of projr(q(s)) is thus on X, and so
q(s) ∈ F rXbir,k. The maps r and q are still inverse to each other. This finishes the proof. □

Corollary 10.8. The limit above can be restricted to each stratum in the centroidal filtration,
that is, for each r, we have a homeomorphism

F rXbir,k ∖ F r+1Xbir,k −→ lim←−
Y∈CLSPX

F rTCk−1Σ(Y) ∖ F r+1TCk−1Σ(Y).
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curves, Annales Scientifiques de l’École Normale Supérieure (4) 48 (2015), no. 4, 765–809.
[Ami14] Omid Amini, Equidistribution of Weierstrass points on curves over non-Archimedean fields, arXiv

preprint arXiv:1412.0926 (2014).
[AN20] Omid Amini and Noema Nicolussi, Moduli of hybrid curves I: Variations of canonical measures,

arXiv preprint arXiv:2007.07130 (2020).
[AN22] Omid Amini and Noema Nicolussi, Moduli of hybrid curves II: Tropical and hybrid Laplacians,

arXiv preprint arXiv:2203.12785 (2022).
[AN23a] Omid Amini and Noema Nicolussi, Higher rank Voronoi tilings and metric degenerations of tori,

preprint (2023).
[AN23b] Omid Amini and Noema Nicolussi, Moduli of hybrid curves III: Algebraic geometry of hybrid curves,

preprint (2023).
[Aro10] Fuensanta Aroca, Tropical geometry for fields with a Krull valuation: first definitions and a small

result, Boletin de la Sociedad Matemática Mexicana 16 (2010), no. 1, 9–14.
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type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), no. 4, 381–451.

[Uli17] Martin Ulirsch, Functorial tropicalization of logarithmic schemes: the case of constant coefficients,
Proceedings of the London Mathematical Society 114 (2017), no. 6, 1081–1113.

[Vir10] Oleg Viro, Hyperfields for tropical geometry I. Hyperfields and dequantization, arXiv preprint
arXiv:1006.3034 (2010).

[W lo97] Jaros law W lodarczyk, Decomposition of birational toric maps in blow-ups & blow-downs, Trans.
Amer. Math. Soc. 349 (1997), no. 1, 373–411.

[Zar39] Oscar Zariski, The reduction of the singularities of an algebraic surface, Annals of Mathematics
(1939), 639–689.

[Zar44] Oscar Zariski, Reduction of the singularities of algebraic three dimensional varieties, Annals of
Mathematics (1944), 472–542.
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