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ABSTRACT. A Lefschetz module is a module over a graded algebra A that satisfies analogues of
Poincaré duality, the Hard Lefschetz property, and the Hodge-Riemann relations with respect to an
open convex cone X in the degree one part of A. We analyze its decomposition into indecompos-
able modules over subrings of A that are generated by elements in the closure of X, establishing
structural results that parallel the decomposition theorem for morphisms of complex projective
varieties. We use our theorems to recover key statements in combinatorial Hodge theory and to
illuminate the Hodge-theoretic aspects of the decomposition theorem in algebraic geometry.

1. INTRODUCTION

Let A = @, A" be a finite dimensional commutative graded algebra over R, and let K4
be a nonempty open convex cone in A'. Let M = @, ., M"* be a finite dimensional graded
A-module equipped with a symmetric bilinear form Q: M x M — R that is A-invariant:

Q(ax,y) = Q(z,ay) foralla e Aandall z,y € M.

We say that (M, Q) is a Lefschetz module of degree d over (A, K 4) if it satisfies the following three
properties, called the Kihler package for (Q, XK 4):

(PD) The induced bilinear pairing between the graded pieces

Q: M' x M7 — R
is nondegenerate if i + j = d, and it is zero if ¢ + j & d (Poincaré duality).
(HL) For each nonnegative k < % and ) € K4, the linear map
Mk _ Md—k‘ T —> nd—?k‘x

is an isomorphism of vector spaces (Hard Lefschetz property).

(HR) For each nonnegative k < g and 1 € K4, the symmetric bilinear form
MFE x MF — R, (z1,22) — (—1)kQ(.131,77d_2k$2)
is positive definite on the kernel of the linear map
Mk _ Md—k‘+1 T —> nd_2k+1$

(Hodge—Riemann relations).
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A classic example of a Lefschetz module of degree d is given by P, H**(X,R), where X
is a compact Kihler manifold of dimension d, and H**(X,R) = H** ~ H?*(X R). Here

Q = the Poincaré pairing on (P H**(X,R) and K4 = the Kéhler cone in H"*(X,R).
k>0

In this case, the Kéhler package for (Q,X 4) is a consequence of the Hodge theory of harmonic
forms [Huy05, Chapter 3]." Another prominent class of examples comes from the intersection
cohomology of a complex projective variety’ and, assuming Grothendieck’s standard conjec-
tures on algebraic cycles [Gro69], the ring of algebraic cycles modulo homological equivalence
on a smooth projective variety.” Other examples of Lefschetz modules include the combinato-
rial intersection cohomology of a convex polytope [Kar04], the reduced Soergel bimodule of a
Coxeter group element [EW14], the Chow ring, the augmented Chow ring, and the conormal
Chow ring of a matroid [AHK18, BHM *22, ADH23], as well as the intersection cohomology of a
matroid [BHM*b], and the cohomology of Kéhler tropical varieties [AP20, AP25]. See Example
3.6 for a discussion of Lefschetz modules that do not arise from Kéahler geometry or algebraic
geometry.

In the remainder of this paper, we suppose that (1, Q) is a Lefschetz module of degree d over
(A,X4) and deduce a number of structural results. Let B be a subalgebra of A generated by a
subset of the closure K4 < A', and set

K p = the nonempty open convex cone given by the interior of X4 n B' in B'.

For a graded B-module N, we define the shifted module N[—k] as the direct sum of the vector
spaces N7 placed in degree i. This is a graded B-module in a natural way.

We work in the category of finite dimensional graded B-modules, and we show that an arbi-
trary decomposition of M into indecomposable objects has a number of remarkable properties
that we call the decomposition package. Choose any decomposition

1.1) M = P @ No[—k]Em (@A)
a k

where N, = N2@®--- @ N are indecomposable graded B-modules satisfying
N? %0, Ng(a) # 0, and N, # Ng as graded B-modules for all o # .

By the Krull-Schmidt theorem applied to the category of finite dimensional graded B-modules
[Ati56], the collection {N,} and the multiplicities m(«, k) are independent of the choice of de-
composition of M. We then have the following properties.

The Hodge decomposition splits H(X, C) into Lefschetz modules with complex coefficients. For formulations of
our main results over C instead of R, see Remark 2.1 and Theorem 2.12.

2A detailed discussion of the known proofs of the Hard Lefschetz property and the Hodge-Riemann relations in this
case can be found in [dCM09a, Section 3].

350me of these Lefschetz modules can be defined over a subfield K < R. For formulations of our main results over
K and their applications, see Remark 2.2, Proposition 2.8, and Example 3.3.
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Theorem 1.1 (Simplicity). If d(«) < d(f) + 2k, then

R,C,or H, ifk=0anda =7,

Homp(Na, Ng[—k]) = { 0 if otherwise

Each of the three finite dimensional division algebras over the real numbers R arises as the
endomorphism ring of some N,; see Example 3.1 for the case of the complex numbers C and
Example 3.2 for the case of the quaternions H.

Theorem 1.2 (Duality). For each o, up to a nonzero constant multiple, there is a unique nonzero
B-invariant symmetric bilinear form 9, on N, satisfying the orthogonality relation

Qu(NL N7y = 0unless i+ j = d(c).

This B-invariant symmetric bilinear form Q,, is nondegenerate.

We show that, for each «, the bilinear form Q, gives IV, the structure of a Lefschetz module
of degree d(«) over (B, Xp).

d(a)

Theorem 1.3 (Hard Lefschetz). For each nonnegative £ < =5 and ¢ € X, the linear map

Ni Ng(a)—kt7 T gd(oc)—Qk‘m
is an isomorphism of vector spaces.

Theorem 1.4 (Hodge-Riemann). There exists a unique ¢, € {1} such that, for each nonnega-

tive k < @ and /¢ € K, the symmetric bilinear form

«

NEX N R, (21,29) —> (—1)FeaQa (xl,ed@v)*%@)
is positive definite on the kernel of the linear map

Nk _ Nd(a)fkle T — ed(a)f2k¢+1m.

Throughout the paper, an important role will be played by an increasing filtration
P=(0cRcPc cPy=M)

called the perverse filtration of M over B, defined as follows: Choose an element ¢ € Xp, and
choose a decomposition of M into a direct sum of cyclic graded R[¢]-modules of the form

d(z)

@ span(Fz),

k=0
where z is an element of degree n(z) in M. We then define P; as the subspace of M spanned by
those summands with d(z) + 2n(x) < j. Alternatively, we can describe the perverse filtration as

(1.2) P n M* = ka_cM A anny (GF17FC) A ME,

(6]
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It follows from Theorem 1.3 that the perverse filtration P is independent of the choice of
¢ € Xp. Indeed, we can refine the given decomposition of M into indecomposable graded B-
modules to a decomposition into indecomposable graded R[¢]-modules and observe that, for
each j, we have

(1.3) Pi= @ No[-k]®m@h),
d(a)+2k<j

In particular, each P; is a graded B-submodule of M, so multiplication by elements of B pre-
serves the perverse filtration:

bP; < P; forall jand allbe B.
Let Gr == (P, Pj/P;—1 be the associated graded of the perverse filtration. Note that
Gr = P Gr*/, where Gr' = (M’ P;)/(M'P;_y),

1,7
and that Gr has the structure of a graded B-module such that B* Gr/ < Gr'**7. By construc-
tion, M and Gr are isomorphic as graded B-modules. We set

Vo = @VF, where VF = Homp(N,[—k], Gr®*(@)T2k),
k

Let D, be the division algebra Hompg(Ny, No). Note that N, and V,, are modules over D,. It
follows from Theorem 1.1 and Theorem 1.3 that for each j and each «, the natural map

No ®p, V§ — Gr*/
is injective when d(a) + 2k = j. Therefore, Gr*’ admits a decomposition

Gr* = P Na®p, Ve
o, d(a)+2k=j

In particular, dimp, V¥ = m(a, k). It follows that Gr**/ has a unique “isotypic” decomposition,
where the summands are given by the sum of all submodules of Gr®’ which are isomorphic to
N, [—k] (equivalently, the sum of all submodules that are quotients of N, [—k]).

We now formulate analogues of the relative Hard Lefschetz theorem and the relative Hodge-
Riemann relations using Gr. By Lemma 4.1, we have aP; < P; 9 for each a € A¥ | so0 we have
an A-module structure *: A x Gr — Gr such that

AF % Grtd < GritRITEE for all k and 4, 5.
It is straightforward to check that
(1.4) QM* A Pj, M  Pyg_;_1) =0 foralli,j,
see Lemma 4.7. We therefore get an induced symmetric bilinear form
Q: Gr' x Gr4=42=7 _, R foralli,j.
Note that Q is both A-invariant and B-invariant:

Qa*z,y) =9Qx,a+y) and Q(bx,y) = Q(x,by) forallae Aand b€ B.
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Let K 4, be the open convex cone K4 + B' in A'.

Theorem 1.5 (Relative Hard Lefschetz). For each nonnegative j < d and n € X4/, the linear
map
Gr*d — Grttdi2d=i, 2T s g

is an isomorphism of vector spaces.

Note that, for each n € A', there is a map V¥ — VF+! induced by n * —.
P Va a y

Corollary 1.6. For each a and 7 € X 4,5 and for each nonnegative k£ < (d — d(«))/2, there is an
isomorphism of vector spaces

Volf N Voilfd(a)fk

d—d(a)—2k

induced by 7 + —. In particular, for each «, the multiplicities m(«, k) = dimp, V¥ form

a symmetric and unimodal sequence.
For elements 7 € X 4,5 and ¢ € X5, and nonnegative integers j < d and i < j /2, set
Prim*/ = ker(nd_j+1: Grd — Gri+d_j+1’2d_j+2) A ker(fj_Z”lz Grd — Grj_Hl’j).
It follows from Theorem 1.3 and Theorem 1.5 that there is a direct sum decomposition
(1.5) Gr=P P n = <zt Prim"/ > :

j<d s<d—j
i<j/2 t<j—%

Theorem 1.7 (Relative Hodge-Riemann relations). For eachn € X 4,5 and ¢ € X and for each
nonnegative j < d and i < d/2, the symmetric bilinear form on Gr*’ defined by

(,y) — (=1)'Q(a, ™7« £ 2y)
is positive definite when restricted to the subspace Prim*~.
Corollary 1.8. For each j < dand n € X 4,p, the B-module
Ker(nt=I+1: Grtd — Gretd—i+l2d=i+2)
equipped with the form Q(z, 17977 * y) is a Lefschetz module of degree j over (B, Xp).
Corollary 1.9. For each k < dand ¢ € K, the A-module
ker(£k+1: Gro,2o+k s Gro+k+1,2o+k)

equipped with the form Q(z, (*y) is a Lefschetz module of degree d — k over (A, X 4/5).

Let R be the graded subalgebra of A consisting of all elements that preserve the perverse
filtration on M. As observed before, M and Gr are isomorphic as graded B-modules. In fact, a
stronger statement holds.

Theorem 1.10 (Decomposition). As graded R-modules, M is isomorphic to Gr.
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The proof of Theorem 1.10 produces a canonical isomorphism, whose construction depends
on the choice of 7 € fKA/B.4

In Section 2, we give a number of applications of the above theorems to matroids, polytopes,
and projective varieties. Motivated by combinatorial applications, many authors have shown
that certain modules are Lefschetz [McM93, Kar04, EW14, AHK18, Kar19, BHM*22, ADH?23,
BHM™b]. Our results, especially Theorem 1.3 and Theorem 1.4, give a tool to produce more
Lefschetz modules from a given Lefschetz module, and we show that several of the above re-
sults can be easily deduced from our work.

Our results can be used to study Lefschetz modules coming from geometry as well. In Sec-
tion 2.4.1, we use our main theorems to verify Grothendieck’s standard conjectures on algebraic
cycles [Gro69] in new cases. In Section 2.4.3, by combining our results with [BBD82], we recover
a result of Saito [Sai88, Sai90] and de Cataldo-Migliorini [dCMO05] that provides a polarized
pure Hodge structure on the intersection cohomology of a complex projective variety.

The proofs of our main theorems are inspired by the beautiful work of de Cataldo and
Migliorini on the decomposition theorem [dCM02, dCMO05, dCM09b]. Although our inductive
strategy resembles theirs, important differences arise. For instance, while their argument relies
on the Lefschetz hyperplane theorem and the simplicity of certain perverse sheaves, these tools
are not available in our setting.

Acknowledgements. We thank Dave Anderson, Mark de Cataldo, Eduardo Cattani, Ben Elias,
Leonardo Mihalcea, and Geordie Williamson for helpful conversations and insightful com-
ments. Part of this work was carried out at the Korea Institute for Advanced Study, and we
thank them for a pleasant working environment. June Huh was partially supported by the
Simons Investigator Grant.

2. THE DECOMPOSITION PACKAGE IN PRACTICE

In this section, we discuss some variations on the main theorems and give applications.
2.1. Coefficient fields. We provide some remarks on the extensions of the main theorems to
cases where the coefficients of A are different.

Remark 2.1. The results of this paper can be extended to modules with complex coefficients. Let
A and X 4 be as in Section 1, and set Ac = A®g C. Let M = &P k=0 M k be a finite dimensional
graded Ac-module endowed with a Hermitian form Q: M x M — C that is A-invariant:

Q(azx,y) = Qz,ay) forallae Ac and all z,y € M.

4Following ideas of Deligne [Del94], de Cataldo produces in [dC13] several other distinguished isomorphisms using
the choice of n in the geometric setting.
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We say that (M, Q) is a complex Lefschetz module of degree d over (A, X 4) if it satisfies the Kahler
package for (Q,% 4), namely, it satisfies (PD) for the induced complex valued pairings Q: M?* x
M7 — C, it satisfies (HL), and (HR) holds for all € X 4 and k < d/2: the Hermitian form

Mk x M* — C, (z1,22) — (—1)kQ(x1717d_2kx2)

is positive definite on the kernel of the map M* — M?~**! given by multiplication by n¢—2#+1.

Let B and K p be as in Section 1, and set B¢ = B ®r C. We choose a decomposition of M as
in (1.1), requiring that each N, is an indecomposable B¢c-module which is nonzero in degrees
0 and d(«). Let N, be the complex vector space N, endowed with the Bc-module structure
in which each element b € B¢ acts as the complex conjugate b on N,. Then the analogue of
Theorem 1.1 holds in the sense that, when d(«) < d(8) + 2k, then

C ifk=0and a =0,

Homp (Na, N[—k]) = { 0 if otherwise

The induced form Q, on N, obtained from the above result is Hermitian, and it is well-defined
up to multiplication by a nonzero constant in C. Moreover, for each «, there is a unique ¢, € S*,
the unit circle in C, such that €,Q, gives NN, the structure of a complex Lefschetz module of
degree d(a) over (B, X ). In other words, the analogues of Theorem 1.3 and 1.4 hold.

The perverse filtration in this setting is defined similarly, taking the spans over C. Therefore
the P; are Be-modules, and so Gr is a graded Be-module with BE Gr < Gr™*J. Moreover,
Gr admits a similar Ac-module structure. In addition, the orthogonality property (1.4) holds,
inducing a Hermitian form

Q: Gr** x Gré—*%—* _, C.

This form is both Ac-invariant and Bc¢-invariant:
Qa*z,y) = Qx,a*y) and Q(bx,y) = Q(x,by) foralla e Ac and b e Be.

With these modifications, the statements of Theorems 1.5 and 1.7, as well as Corollaries 1.6
and 1.8 and 1.9 still hold. Finally, let R be the graded subalgebra of A¢ consisting of all elements
which preserve the perverse filtration. Then the statement of Theorem 1.10 still holds. o

For example, let X be a connected compact Kéhler manifold of complex dimension d with
real cohomology H(X) = @5¢H F(X,R). The orientation on X induces an isomorphism
deg: H*(X,R) — R. Let Q be the symmetric bilinear form on H(X) defined by (z,y) —
deg(zy), i.e., the Poincaré pairing. For each nonnegative integer k, the kth cohomology with
complex coefficients of X is equipped with a Hodge decomposition

H*(X,C)= P H.

p,q=0
p+q=k

For each k, let H** (X, R) be the intersection of H?* (X, R) with H**. Let A = @, ., H**(X,R),
s0 Ac = @j= H%%, and let X 4 be the Kdhler cone in H}(X, R). For each integer n, let M,, be
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the graded A-module defined by M,, = P w0 H k+n.k We endow M,, with the Hermitian form
Q,: M, x M,, — C, Q,(o,3) =i"Q(a, 3), wherei=+/—1.

Then each (M,,, Q,,) is a complex Lefschetz module of degree d — n over (A, X 4). We refer to
Section 2.4.2 for more on Lefschetz modules with a Hodge structure.

Remark 2.2. Some Lefschetz modules have natural Q-structures. For example, this is the case
for the cohomology of a connected smooth complex projective variety if the cohomology is
generated by algebraic cycles, the Chow ring of a matroid, or the reduced Soergel bimodule of
a Weyl group element. o

2.2. Applications to matroids. In recent years, significant progress in matroid theory has been
achieved by proving that certain combinatorially defined modules are Lefschetz, see [AHK1S,
ADH23, BHM*b]. Several of these results can be recovered or extended using the main theo-
rems of this paper. Let M be a matroid of rank d on E = {1,...,n}. Foreach 0 < k < d, let
L¥(M) denote the set of flats of M of rank k.

Theorem 2.3. Forany k < j < d — k, we have [£¥(M)| < |£/(M)].

Theorem 2.3 was conjectured in [DW74, DW75], proved for realizable matroids in [HW17],
and established in full generality in [BHM*b]. Its best known special case is the de Bruijn—Erd&s
theorem on point-line incidences in projective planes [dBE48]:

Let E be a set of points in a projective plane that is not contained in any line. Then there
are at least | E| distinct lines that intersect E in at least two points.
We now show how Theorem 2.3 can be deduced from the main results of this paper.
Let H(M) denote the graded Mobius algebra of M. As a graded vector space, we have
d
HM) =D @ Ryr |,
k=0 \ FeLk(M)

where the degree of yr is the rank of F'. The multiplication is given by the formula

yrve if tk(F) 4+ 1k(G) = tk(F v G),

0 if otherwise.

Yyryc =

Note that H(M) is generated as an algebra by the elements y; for each rank 1 flat ¢, and that
the dimension of H*(M) is the number of rank & flats of M. In [BHM*22], the authors con-
struct a graded algebra A(M), called the augmented Chow ring of M, which contains H (M) as
a subalgebra. By [BHM*22, Theorem 1.3], the augmented Chow ring A(M) is equipped with
an open cone X 4.y in its degree one part and a map deg: A(M) — R such that the pairing
Q(z,y) = deg(zy) gives (A(M), Q) the structure of a Lefschetz module of degree d over A(M)
with respect to K 4 ). Furthermore, each y; lies in the closure of K 4.
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Choose a decomposition of A(M) into indecomposable graded H(M)-modules. Let I H (M)
denote the unique summand which intersects the degree 0 part of A(M), so I H (M) contains
H(M). By the Krull-Schmidt theorem applied to the category of finite dimensional graded
H(M)-modules [Ati56], TH(M) is well-defined up to isomorphism of graded H(M)-modules.
Let X vy denote the interior of X Ay N H(M), which contains the set of all positive linear

combinations of the y;, i.e., { Z?:l ¢y ¢ ¢; > 0 for all z}

Proof of Theorem 2.3. The main theorems of this paper show that (I H (M), Q| ) is a Lefschetz
module over (H (M), X)) of degree d. Theorem 1.3 states that multiplication by (3 y;)% 2
induces an isomorphism from I H*(M) to I H4~*(M). In particular, multiplication by (3" y;)?~ 2
induces an injection from H*(M) to H?~*(M), as multiplication by > y; preserves the submod-

ule H(M) of IH(M). This implies the desired inequality. O

In [BHM"b], the proof of Theorem 2.3 was achieved by giving an explicit construction of
IH(M) as a submodule of A(M) and proving directly that it is a Lefschetz module. One of
the other main results of loc. cit., [BHM™b, Theorem 1.9], is the identification of the Hilbert
series of I H (M) with the recursively-defined Z-polynomial of a matroid [PXY18]. In particular,
this proves that the coefficients of the Z-polynomial are nonnegative, which is not clear from
the definition. Furthermore, if m is the ideal of positively graded elements in H(M), then the
Hilbert series of IH(M)/mIH (M) is the Kazhdan—Lusztig polynomial of M, a recursively-defined
polynomial which was introduced in [EPW16], and so the coefficients of the Kazhdan-Lusztig
polynomial of M are nonnegative as well.

One key tool in the computation of the Hilbert series of JH(M) and IH(M)/mIH (M) in
[BHM*b] is the following statement [BHM b, Lemma 6.2]. For a flat ' of M, let My denote
the contraction of M at F'.

Proposition 2.4. As graded vector spaces, yrIH (M) is isomorphic to I H(Mpg)[—rk(F)].

This result is proved in loc. cit. only after giving an explicit construction of IH(M). In the
forthcoming work [BHM " a], the authors give a direct algebraic proof of Proposition 2.4. Using
Proposition 2.4, we can compute the Hilbert function of IH (M) and IH (M)/mIH (M) without
further input. We begin with a general result about Lefschetz modules.

Proposition 2.5. Let (), Q) be an indecomposable Lefschetz module of degree d over (A, X ).
If d is even and M is not concentrated in degree d/2, then for any nonzero » € M%?, there is
some a € A of positive degree such that ax is nonzero.

That is, an indecomposable Lefschetz module has no socle in its middle degree unless it is
concentrated in middle degree.

Proof of Proposition 2.5. Let S be the subspace of M?? consisting of elements such that, for all
a € A of positive degree, we have ax = 0. Note that S is a graded A-submodule of M. Choose
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some 1 € K4. For any nonzero x € S, (HR) gives that (—1)¥2Q(z,z) > 0 as nz = 0. In
particular, the restriction of Q to S is definite and therefore nondegenerate. Therefore, if we set
M ={yeM:Q(x,y) =0forall x € S}, then M = M’'®S. Note that M’ is a nonzero graded A-
submodule as M is not concentrated in degree d/2. Because M is indecomposable, this implies
that S = 0. O

We can use Proposition 2.5 to recover a key vanishing statement from [BHM*b, Proposition
1.7].

Proposition 2.6. The Hilbert series of I H(M)/mIH (M) has degree less than d/2.

Proof. Note that (HL) implies that {z € TH(M) : mz = 0} vanishes in degree strictly less than
d/2. As I H(M) is indecomposable by definition, Proposition 2.5 implies that {x € TH(M) : mz =
0} vanishes in degree d/2. The bilinear form Q induces a perfect pairing between I H(M)/mIH (M)
and {z € IH(M) : mz = 0}, which gives the result. O

From Proposition 2.4 and Proposition 2.6, one can then use elementary algebraic considera-
tions to derive a recursion for the Hilbert series of IH(M) and I H(M)/mIH (M). This recursion
implies that the Hilbert series coincide with the Z-polynomial and Kazhdan-Lusztig polyno-
mial of M, see [BHM™b, Proof of Theorems 1.2 and 1.3].

Additionally, the main theorems can be applied in a number of other settings related to ma-
troids. For example, in [BHM 22, Theorem 1.4], the authors study the decomposition of the
Chow ring and augmented Chow ring of a matroid as a module over the subring generated by a
particular element in the boundary of X. Theorem 1.5 and Theorem 1.7 immediately give conse-
quences for this decomposition. The authors also study the decomposition of the (augmented)
Chow ring of a matroid as a module over the (augmented) Chow ring of a matroid deletion
[BHM*22, Theorem 1.1 and 1.2]. As the (augmented) Chow ring of the matroid deletion is a
subring which is generated by elements in X, Theorem 1.5 and Theorem 1.7 immediately give
consequences for this decomposition.

2.3. Applications to polytopes. For a full-dimensional polytope in a real vector space W, the
associated normal fan is a polyhedral fan in the dual space which is equipped with a strictly
convex piecewise-linear function. Such a fan is called a projective fan. If the polytope has ratio-
nal coordinates with respect to some Q-structure on W, one can then associate a projective toric
variety to this projective fan. Beginning with the work of Stanley [Sta80, Sta87], the fact that
the intersection cohomology of a projective toric variety is a Lefschetz module has been used to
deduce several combinatorial inequalities satisfied by polytopes, corresponding to the nonneg-
ativity and unimodality of the intersection cohomology Betti numbers of the toric variety.

However, it is not always possible to choose a Q-structure on W so that the polytope has
rational coordinates. In this case, there is no associated toric variety. It was an outstanding open
problem to show that the same inequalities hold for all polytopes until it was resolved by Karu
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[Kar(04], building on the earlier works [McM93, BBFK02, BLO3]. This was done by constructing
an analogue of the intersection cohomology purely in terms of the projective fan and proving
that it is a Lefschetz module. In what follows, we discuss applications of the main theorems of
this paper to this setting.

Let ¥ be a projective fan in a real vector space V of dimension d. A piecewise polynomial
function on ¥ is a real-valued function on V' whose restriction to any cone of ¥ is equal to
the restriction of a polynomial function on V. Let A(X) be the ring of piecewise polynomial
functions on ¥ modulo the ideal generated by globally linear functions. In [BBFK02, BL03], a
graded A(X)-module IH(X), called the intersection cohomology of &, is constructed. When
¥ is rational, TH(X) is identified with the intersection cohomology of the corresponding toric
variety.

The module I H () is constructed using the theory of sheaves on the poset of cones of the fan.
For each cone o of ¥, the authors of [BBFK02, BL03] construct a sheaf £, on the poset of cones
of ¥ whose global sections form a module over the ring of piecewise polynomial functions on
Y. Let 0 be the cone {0} of 3. We obtain I H(X) by tensoring the global sections of £, with A(X).
When the fan is rational and complete, we obtain the intersection cohomology of the torus-orbit
closure corresponding to ¢ by tensoring the global sections of £, with A(X), with the grading
so that it is supported in degrees {0, ..., d — dim o}. The construction of £, is valid for any fan,
even one that is not necessarily projective or complete. Let 7: > - Ybea proper map of fans.
Then there is an analogue of the decomposition theorem: let o denote the cone {0} of 5. Then
Rim,.L; = 0 for i > 0 [BL03, Theorem 5.6], and

(21) W*Eﬁ — @O’EZ‘cU ® Wov

where W, = ®@W/ is a graded vector space [BL03, Theorem 2.2 and 2.6]. The sheaf £, appears
as a summand, which implies that, if ¥ is projective, I H(X) is an A(X)-module summand of

~

IH(S).

Let X be the cone of strictly convex piecewise linear functions on 2. In [Kar04], Karu proved
that if ¥ is projective, then I H (3), which is equipped with an A(X)-invariant bilinear form (see
[BLO3, Section 6]), is a Lefschetz module of degree d over (A(X),X). When X is simplicial, this
was previously proved by McMullen [McM93].

Since I H(X) can be decomposable as a graded A(X)-module, we cannot use the main the-
orems to recover Karu’s result. Indeed, let 3 be a projective simplicial fan which refines ¥,
which exists by [CLS11, Theorem 6.1.8 and 11.1.9]. Then A(S) is a Lefschetz module [McM93]
and IH(Y) is a graded A(X)-module summand of A(X). But Theorem 1.3 cannot be applied to
I'H(Y) because it may not be indecomposable over the subring of A(3) which is generated in
degree 1.

~

In order to apply the results of this paper, we need to know that a filtration on I H(X) which
is defined using sheaves on fans agrees with the perverse filtration, which is defined using a
strictly convex piecewise linear function on X. This first filtration, which was introduced and
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studied in [Kar19, Section 4], is defined using the decomposition in (2.1). We let 7P @,ex; L, ®
W, denote the sum of summands of the form £, ® W! where i < dimo — d + p. Because Y is
simplicial, the global sections of 7L is the ring of piecewise polynomial functions on 3, and
so it is equipped with a surjective map to A(X). We can then define an increasing filtration on
A(%) by the images of the global sections of 7<P @,z Lo ® W,

If one knows that this first filtration agrees with the perverse filtration associated to a strictly
convex piecewise linear function on X (and, in particular, is independent of the choice of decom-
position (2.1)), then it follows that TH(Y) is an A(X)-module summand of Gr**?. Furthermore,
if 1) is a strictly convex piecewise linear function on 3, then it follows that / H (%) is contained in
ker n due to the semisimplicity of the appropriate category of sheaves on ¥, see [Kar19, Theorem
2.4]. Corollary 1.8 then implies that /H (X)) is a Lefschetz module.

That these two filtrations coincide is essentially equivalent to (HL) for /H(¥) and the inter-
section cohomology of star fans of ¥, so it is not easy to establish directly. However, the results
of this paper can be used to simplify Karu’s proof of this statement in [Kar04]. Karu’s argument
proceeds by induction on dimension, first proving (HL) for IH(X) using (HR) for fans of di-
mension at most d — 1, and then proving (HR) for I H(X). After one proves (HL) for TH(X), the
main theorems of this paper imply that I H(X) is a Lefschetz module, obviating the need for the
second step.

In [Kar19], Karu proved an analogue of the relative Hard Lefschetz theorem for sheaves on
fans. We show that it is possible to deduce this result from the main theorems of this paper. We
need to use that the intersection cohomology of a projective fan is a Lefschetz module [Kar(04].
However, if 3 is simplicial, then TH(X) = A(X) and A(X) is generated in degree 1. In this case,
which is the one relevant for one of the main combinatorial applications of the relative Hard Lef-
schetz property in this setting, the unimodality of local h-polynomials of regular subdivisions
[Sta92, KS16], the argument below does not require Karu's results. The argument in [LS25, Proof
of Theorem 1.9] can also be adapted to deduce the unimodality of local ~-polynomial of regular
subdivisions from the main theorems without needing the theory of sheaves on fans.

Given a proper map 7: % — ¥ of fans, we say that a piecewise linear function on the ambient
vector space of 5 is relatively strictly convex if it is strictly convex on the inverse image of each
cone of 3. We say that 7 is projective if there is a relatively strictly convex function.

Theorem 2.7. Let ¥ be a fan, let 7: £ — ¥ be a projective map of fans, with £ in a vector space
of dimension d and ¥ in a vector space of dimension e. Choose a decomposition of 7. L; as in
(2.1). Let n be a relatively strictly convex piecewise linear function on 5%. Then for any o € ¥ and
each nonnegative j < (d—e—dim ¢)/2, multiplication by n¢~¢~4im=2j induces an isomorphism
from W to Wd—e—dimo—j,

It follows from the semisimplicity of the appropriate category of sheaves [Kar19, Theorem
2.4], which is a consequence of (HL), that multiplication by 7 maps W into W7*1, so multipli-
cation by n¢—¢~4imo=2j does indeed induce a map from W to Wd—e-dimo—j,
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Proof. We first consider the case when X is projective. Then X is projective as well, and the
discussion above identifies the map pd—¢~dimeo=2i; Wj — Wd-e-dimo=j with a map induced
by the map nd—e—dima—2j*. Gro,e—dima-&-Zj N Gro+d—e—di1na—2j,2d—e+dima—2j That this is an

isomorphism then follows from Theorem 1.5.

We now reduce the general case to the case where ¥ is projective. Because 7 is a pushfor-
ward map of sheaves between topological spaces, we can replace X by the fan consisting of o
and all of its faces and replace ¥ by the inverse image of . Choose a projective fan ¥’ contain-
ing 3, which is possible by choosing a completion (using [EI06]) and then refining it to make
it projective. There is a projective fan 5 containing 53 which maps to X’. For example, if y is a
strictly convex piecewise linear function on the support of 3/, we can take the cones of 3 to be
the loci where 7! (y) + n is linear. We have then reduced to the case already proved. d

2.4. Applications to projective varieties. Finally, we give some applications of the main theo-
rems to projective varieties. These applications come in two flavors. Assuming Grothendieck’s
standard conjectures on algebraic cycles [Gro69], the ring of cycles modulo numerical equiva-
lence on a smooth projective variety is a Lefschetz module, see Proposition 2.8. That this holds
is known unconditionally in some cases, for example for smooth projective varieties over C for
which the Hodge conjecture is known, and for several classes of varieties over fields of arbi-
trary characteristic [Ito05]. If this is known for a smooth projective variety X, then we can apply
the main theorems to any map from X to a projective variety Y, taking B to be the subring
generated by the pullbacks of ample divisor classes on Y. In some cases, this can be used to
deduce some of the standard conjectures for Y. This is closely related to the work of Corti and
Hanamura [CH00, CHO07], who, assuming several conjectures, develop a version of the decom-
position theorem for Chow groups.

We also explain how the results of this paper can be used to give easier proofs of several cele-
brated results about the intersection cohomology of algebraic varieties and the Hodge-theoretic
nature of the decomposition theorem. The main theorems give a purely algebraic version of the
decomposition theorem, but the results of [BBD82] can be used to show that, in the setting of a
map X — Y of complex projective varieties, this is related to the usual decomposition theorem
for perverse sheaves, see Proposition 2.13. Using only the main theorems and results which
were available when [BBD82] was written, we can show that the geometrically-defined per-
verse filtration on the cohomology of X is by Hodge substructures and that the relative Hodge-
Riemann relations hold, i.e., the primitive pieces have polarized Hodge structures. With a little
more geometric input, we can show that the intersection cohomology of a projective variety
carries a polarized pure Hodge structure. This result, which attracted considerable attention in
the 70s and 80s primarily using L, methods [Zuc79, Zuc83, Che80, HP85, CKS87, KK87], was
finally proved using M. Saito’s theory of mixed Hodge modules [Sai88, Sai90].

2.4.1. Algebraic cycles. We begin by stating the forms of the standard conjectures on algebraic
cycles that we will use, see [Gro69]. For a connected smooth projective variety X of dimension
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d over an algebraically closed field of arbitrary characteristic, let Anum(X) denote the Chow
ring of cycles modulo numerical equivalence with real coefficients, which is equipped with

X) — R. Then we have the following versions of the standard

an isomorphism deg: A%, (

conjecture A and the standard conjecture of Hodge type.

Conjecture A(X). Letn € A
d—2k

) be the class of an ample divisor. Then, for any k < d/2,

num(

induces an isomorphism from A% (X) to A4 F(X).

num

multiplication by 7

Conjecture Hdg(X). Letne A

on Ak (X) given by (z1,z2) — (—1) deg(n?=2*z,25) is positive definite on the kernel of mul-
d—2k+1

L m(X) be the class of an ample divisor. Then the bilinear form

tiplication by 7

For a connected smooth projective variety X, let K x be the cone in AL, (X) given by positive
real linear combinations of classes of ample divisors, and let Qx be the symmetric bilinear form
on Ayum(X) given by (21, z2) — deg(z122).

Proposition 2.8. Assume that A(X) and Hdg(X) hold for all connected smooth projective vari-
eties. Let X be a connected smooth projective variety of dimension d. Then (Apum(X),Qx) isa
Lefschetz module of degree d over (Auum(X), Xx).

X)is
anonzero element of the kernel of multiplication by 7¢~2* for some k < d/2. Write n = >, a;[D;],

num(

Proof. We induct on the dimension of X. Let n) be an element of X x, and suppose g € A

where the [D;] are the classes of smooth connected ample divisors and the a, are positive real
numbers. Then we have

0=0x(g,n"*g) = > a;Qx (g, [Di]n* > "g).

Let ¢} denote the restriction map Anum(X) — Anum (D;). By the projection formula,

Ox (g, [Diln™ > 1g) = Qp, (t¥ (9), cF ("> 1g)).

]d 2k

We claim that ¢¥(g) is nonzero. Indeed, A(X) implies that [D g is nonzero, so there is some

class h; € Ak (X) with
Qx (hi, [Di]*™**g) = Qp, (F (ha), o ([D:] 727 1) i (9))

nonzero, implying the claim. As ¥ (n¢=2%g) = 0 and A,um(D;) is a Lefschetz module by induc-
tion, (HR) implies that (—1)*Qx (g, [Di]n¢~2*~1g) > 0. Applying this for all i contradicts the fact
that Qx (g,n%2¢g) = 0.

We have verified (HL) for any n € Xx. This implies that, for any n € Xx and k < d/2,

the form on A% (X) given by (z1,72) — Qx (x1,n4 2k

x2) is nondegenerate. In particular, the
signature of this form does not change as we vary n within Xx. As (HR) for 7 is equivalent to
the signature of this form being Zf: (—1)%(dim A% . (X) — dim A% (X)), that this holds when

7 is the class of an ample divisor implies the result. O
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That A,um(X) is a Lefschetz module is sufficient for many applications of the standard con-
jectures. For example, if X is a smooth projective variety over the algebraic closure of a finite
field, then A,,,m (X x X) being a Lefschetz module implies the Riemann hypothesis for X, see
[Kle94].

Before applying our results to Chow rings modulo numerical equivalence, we will need a
few results on Lefschetz modules which are rings. Let A be a graded R-algebra equipped with
an isomorphism deg: A? — R and a nonempty open convex cone X4 in Al. Let Q4 be the
symmetric bilinear form defined by (x1,z2) — deg(z1z2). Suppose that (A4,Q,4) is a Lefschetz
module of degree d over (A, K 4).

Lemma 2.9. Lety,...,y. be elements of X 4, and suppose that the product y; - - - y. is nonzero.
Let € X 4. Then deg(n¢=cy; - y.) > 0.

Proof. By iteratively applying Lemma 4.6, A/ ann(y; - - - y.), equipped with the bilinear form Q
described in Section 4.3, is a Lefschetz module of degree d—e over (A, K 4). Because y; - - -y 0,
1 is a nonzero element of A/ann(y; ---y.). Then (HR), for k = 0, implies that Q(1,7%"¢) =
deg(n?=°y; - - - y.) is positive. O

We will consider a graded subring B of A for which B¢ is 1-dimensional, and B* = 0 for
s > e. Choose an isomorphism degp: B* — R, and let Qp be the symmetric bilinear form given
by Qp(x1,22) = degp(xi1x2). We will assume that Qp is nondegenerate; whether this happens
is independent of the choice of isomorphism deg .

Proposition 2.10. Suppose that B is generated as a ring by elements of K 4. Set X to be the
interior of B! n X 4. Then there is a unique € € {£1} such that (B, ¢Qp) is a Lefschetz module of
degree e over (B, Xg).

Proof. Because K is open in B!, B is generated by elements y1, . .., ys of K. Let ) be a class in
Ka,andsetf =y, +--- + ys. Then

deg(n®=cte) = . deg(n™ “wi, - vi.)-
(1 5eemyie)

Each term in this sum either vanishes (if y;, - --y;. = 0) or is positive by Lemma 2.9. Because
B is generated by y1,...,ys, at least one term is positive. So we deduce that ¢ + 0, and so
¢¢ ¢ ann(n?=¢). Therefore B¢ N ann(n?=¢) = 0.

The image of B under the quotient map A — A/ann(n?~¢) is isomorphic to B. Indeed, the
nondegeneracy of O implies that every nonzero ideal in B intersects B¢. As B¢nann(n?~¢) = 0,
this implies the claim that Bnann(n?~¢) = 0. By Lemma 4.6, A/ ann(n?~¢) is a Lefschetz module
over (A,X ). We may replace A by A/ann(n?¢), and all the hypotheses are still satisfied. We
may therefore assume that d = e.
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Up to a nonzero constant, the restriction of Q4 to B is Qp, and so the restriction of Q4 to B
is nondegenerate. This implies that B is a B-module summand of A, and it is clearly indecom-
posable as a B-module. The main results of this paper then show that (B, Q4|g) is a Lefschetz
module over (B, X ). We set € to be the sign of the constant relating Q4|5 to Qp. O

Theorem 2.11. Let X — Y be a map of connected smooth projective varieties, and assume
that (Ayum(X), Qx) is a Lefschetz module of degree dim X over (Ayum(X), Xx). Suppose that
Apum (Y) is generated as a ring in degree 1. Then (A,um (Y), Qy) is a Lefschetz module of degree
dimY over (A,um (YY), Ky ).

1

Proof. Because the ample cone of Y is open, A,

(Y') is generated by Xy. Then the hypotheses
of Proposition 2.10 hold, so it remains to check that the constant e appearing there is 1. But this

follows from the fact that if ¢ is an ample class on Y, then Qy (1, ¢4mY) > 0. O

2.4.2. Lefschetz modules with Hodge structures. We now discuss the behavior of the decomposition
package with respect to Hodge structures.

Let A and M be as in Section 1, and set M¢c = M ®r C. We say that M is a graded A-module
with a Hodge structure if the following holds:

(HS1) Each graded piece M{ is equipped with a pure Hodge structure of weight k, and the
elements of A! act as morphisms of Hodge structures of bidegree (1, ), that is,

ME= @ MP, Mpd=M?, and A'MPIc MR
ptg=k
Now let A, M, X4 and Q be as in Section 1, and set Mc = M ®g C. We say that (M, Q) is a
Lefschetz module endowed with a pure Hodge structure of degree d, or simply a Lefschetz module with
Hodge structure, if M is a graded A-module with a Hodge structure in the sense of (HS1) and,
moreovet, the following holds:

(HS2) For each integer n, let M,, = @, -, M k+n.k and endow M,, with the Hermitian form
Q,: M, x M,, — C, Q,(a,B) =i"Q(a, B).
Then (M, Q,,) is a complex Lefschetz module of degree d — n over (4, K 4).

The degrees in a Lefschetz module with Hodge structure are doubled compared to ordinary
Lefschetz modules, e.g., we have dim M? = dim M??~% in a Lefschetz module with Hodge struc-
ture of degree d. Note that the category of finite dimensional graded A-modules with Hodge
structures is an abelian category in which every object has finite length, so the Krull-Schmidt
theorem applies to it.

Let N be a graded A-module with a Hodge structure, and consider the Hodge decomposition
NE = @,,,, NP9 of its graded pieces. For each integer n, set N, = @, N**™*. Note that
N,, = N_,,. Moreover, Ny and N,, ® N,, for n > 0 are defined over R, i.e., there are graded
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A-modules Ly, L1, ... such that Loc ~ Npand L, c ~ N, @ N, forn > 0. Then each L, is a
graded A-module with a Hodge structure, and we have N = @®,,>¢L,,.

An object N is indecomposable in the category of finite dimensional graded A-modules with
Hodge structures if and only if there is a unique n > 0 such that N, is nonzero, and N, is an
indecomposable graded Ac-module. If n = 0, this is equivalent to L being an indecomposable
graded A-module. If N is an indecomposable Lefschetz module with Hodge structure with
n = 0, then we say that NV is of Hodge—Tate type.

Let B and K p as in Section 1. Choose a decomposition as in (1.1), where each N,, is indecom-
posable as a graded B-module with a Hodge structure. Let N¥ . = @D, q—r VL9 be the Hodge
decomposition of the graded piece N¥ ... For each a, one of the following happens: Either N, is
of Hodge—-Tate type, in which case, IV, is an indecomposable B-module. Or, N, ¢ = Na’n@)ﬁa_’n
for a positive integer n > 0 with N, , = @k;o N(’XH””“, and N, , is an indecomposable Bc-
module. Applying Theorems 1.1, 1.2, 1.3, and 1.4 and their complex analogues in Remark 2.1,
we infer the existence of Q, and ¢, € {£1} such that (N, ,,€,9Q,) is a Lefschetz module over

(B, X ) with Hodge structure.

We can define the perverse filtration on M, using the decomposition into indecomposable
graded B-modules with Hodge structures, except taking into account the degree doubling. Le.,
a summand N, [—k], where N, is a Lefschetz module with Hodge structure of degree d(«) and
so is supported in degrees 0,2, ..., 2d(«), first appears in Py(q)4-

Theorem 2.12. Consider a decomposition of M into indecomposable B-modules with Hodge
structure as in (1.1). Then for each ¢, (Na,€,Qq) is a Lefschetz module with Hodge struc-
ture over (B, X g). Moreover, the perverse filtration is by Hodge substructures, and the graded
pieces of the perverse filtration inherit pure Hodge structures. For eachn € KX 4,5 and ¢ € X3,
the primitive pieces of Gr carry polarized Hodge structures.

Proof. We already discussed the proof of the first statement. The second assertion follows from
this, in view of (1.3) and the definition of Gr. The last assertion follows from the version of
Theorem 1.7 for complex Lefschetz modules. O

2.4.3. The Hodge theory of the decomposition theorem. Let X be a complex projective (integral) va-
riety of dimension d. For a local system £ on a Zariski open subset U of X, let IC(U, £) denote
the intersection cohomology perverse sheaf in D%(X), the bounded derived category of con-
structible sheaves on X. If £ is a simple local system, then IC(U, £) is a simple object in the
category of perverse sheaves on X [BBD82, Theorem 4.3.1]. Let [H(X, L) = H(IC(U, L)[—d])
be the hypercohomology of IC(U, £), shifted so that its support is contained in {0, ..., 2d}.

Let H(X) denote the subring of H*(X;R) generated by the Chern classes of line bundles on
X. Then IH (X, £) is a graded module over H(X). Let X(X) denote the open convex cone in
H?(X) generated by the first Chern classes of ample line bundles.
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Now let f: X — Y be a map from X to a projective variety Y, and assume that X is smooth.
The decomposition theorem of Beilinson, Bernstein, Deligne, and Gabber [BBD82, Theorem
6.2.5] states that there is an isomorphism in D%(Y")

f*RX ~ @Ic(zi,ﬁi)[_d - ei]v

where R is the constant sheaf on X, the Z, are smooth connected locally closed subvarieties
of Y of dimension d;, each £; is a simple local system on Z;, and the e; are integers. Taking
hypercohomology, for each k we obtain a direct sum decomposition

(2.2) HY(X;R) ~ (P IHM—etdi(Z,, ;).

Both H*(X;R) and each IH(Z;, L;) are graded H(Y)-modules, and the above isomorphism is
an isomorphism of graded H(Y')-modules.

Because X is smooth, the main theorems of Hodge theory give H*(X;R) the structure of
a Lefschetz module with Hodge structure over H(X), see, e.g., [Huy05, Chapter 3]. We will
consider the decomposition of H*(X;R) as a module over the image of H(Y) in H(X).

The perverse truncation functors on D%(Y') induce a filtration P, on H*(X;R), which we call
the geometric perverse filtration. In terms of the chosen decomposition (2.2), this filtration is
given by

Pl = P IH(Z;, L;).
e;i<j
We also have a perverse filtration P, on the Lefschetz module H*(X;R), obtained by decom-
posing H*(X;R) in the category of graded H (Y )-modules with Hodge structures.

Proposition 2.13. The geometric perverse filtration is equal to the perverse filtration on H*(X; R).

Proof. Let ¢ € H*(Y) be an ample class. By [BBD82, Theorem 6.2.10], as ¢ restricts to an ample
class on the closure of each Z;, multiplication by ¢4=* induces an isomorphism from I H F(Zi, L)
to TH?%~%(Z; L;) for each k > 0 and each 4. In particular, refining the decomposition (2.2)
into a decomposition of graded R[¢{]-modules, we see that the summand corresponding to
I1C(Z;, L;)[—d — e;] is contained in P.,, and it intersects P.,_; trivially. |

In particular, this implies that the geometric perverse filtration on H*(X;R) is “Hodge-
theoretic.” More precisely, the main theorems for Lefschetz modules with Hodge structures,
especially the relative Hodge-Riemann relations, give the following.

Corollary 2.14. The associated graded pieces of the geometric perverse filtration are endowed
with pure Hodge structures, and for any ample classes n € H(X) and ¢ € H(Y), the primitive
pieces Prim™/ = ker(nd—i+1: Gr'd — Qrit2d-2+22d7042)  ker(¢i—itl: Gr'd — Gr¥TiT2d)

carry polarized Hodge structures.
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Corollary 2.14 was first proved by Saito [Sai88, Sai90] using his theory of mixed Hodge mod-
ules, and a simpler proof was given by de Cataldo and Migliorini [dCMO05]. The argument
above deduces Corollary 2.14 as a formal consequence of the results of [BBD82].

We now explain how the main theorems can be used to put a polarized pure Hodge structure
on the intersection cohomology of a complex projective variety. This was first accomplished by
Saito [Sai88, Sai90]. Another proof was given by de Cataldo and Migliorini [dCMO05], and our
approach is similar to theirs.

Let Y be a complex projective variety of dimension d, and let IH(Y") denote the intersection
cohomology of Y with respect to the trivial local system. Let H(Y) be the subring of H*(Y;R)
generated by the first Chern classes of line bundles, and let Xy denote the open cone in H?(Y))
generated by the first Chern classes of ample line bundles. Note that Verdier duality induces a
nondegenerate H (Y ')-invariant symmetric bilinear form Q on IH(Y').

Proposition 2.15. There is a pure Hodge structure on IH(Y') so that it is a Lefschetz module
with Hodge structure over (H(Y), Ky).

Proof. Let f: X — Y be a projective resolution of singularities. By the decomposition theorem
[BBDS82, Theorem 6.2.5], IC(Y) is a summand of f«Ry[d]. Decompose the Lefschetz module
with Hodge structure H*(X;R) over H(Y). By Proposition 2.13, IH(Y) € Py and IH(Y) n
P;_1 = 0,50 [H(Y) can be identified with a subspace of Gr**“.

Let PH*(f.R[d]) denote the kth perverse cohomology of f.R[d], so IC(Y) is a summand of
PHO(f«R[d]). Because PH°(f.R[d]) is a semisimple perverse sheaf, it has a canonical decom-
position into “isotypic components.” Because f is birational, there is a unique summand of
PHO(f«R[d]) which is isomorphic to IC(Y). As the hypercohomology of *H°(f.R[d]) is identi-
fied with Gr*, this identification of I H(Y) with a subspace of Gr®“ is canonical.

Let n be an ample class on X. Multiplication by 7 induces a map from *H°(f.R[d]) to
PH2(f«R[d]). Because f is birational, "H?( f+R[d]) does not contain any summand isomorphic
to IC(Y'). Because IC(Y) is a simple perverse sheaf, it is therefore killed by multiplication by 7.
This implies that [ H(Y') is contained in ker = Gr®“.

By Corollary 2.14, this identifies I H (Y) with a summand of a Lefschetz module with Hodge
structure over H(Y'). By a variant of Lemma 6.3 for Lefschetz modules with Hodge structures,
it suffices to prove that IH(Y') is a Hodge substructure of Gr*“. If H*(X;R) is of Hodge-Tate
type, then this is automatic. In general, this is accomplished by a geometric argument of de
Cataldo and Migliorini [dCMO05, Proof of Theorem 2.2.1], which we now sketch.

One proves the following more general statement: let g: W — Z be a map between pro-
jective varieties, with W smooth of dimension d. For each k, there is a canonical isomorphism
PHF (g Ry [d]) ~ @D, IC(Zi, L;), where each L; is a semisimple local system and Z; + Z; for
i 4 j. This canonically identifies I H(Z;, £;) with a subspace of Gr*?**, which is the hyper-

cohomology of PH*(g«Ry[d]). We claim that, for each k and each i, IH(Z;, L;) is a Hodge
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substructure of Gr*?**. As IC(Y) is the unique summand which is supported on all of Y/, this
implies the result.

We induct on dim W. By slicing by an ample divisor on either W or Z and using a version of
Proposition 4.10 or Proposition 4.12 for Lefschetz modules with Hodge structures, we reduce to
proving this general statement for Gr®?,

Let Z; be the dense stratum in Z. Because the IC(Z;, L£;) are semisimple perverse sheaves, the
subspaces I H dim Z; (Z;, L;) of Gr®? are orthogonal to each other with respect to the bilinear form
Q. As Q is compatible with the Hodge structures, the orthogonal complement of a Hodge sub-
structure is a Hodge substructure, so it suffices to show that, foreach j + 1, ®;4,/H dimZi (7. L;)
is a Hodge substructure of Gr®.

Choose some j # 1, and let V be a resolution of singularities of g=1(Z;). The map from V
to Z induces a perverse filtration on H*(V;R), and there is a pullback map Gr** H*(W;R) —
Gr®® H*(V;R). This is a map of Hodge structures, and I H4™ % (Z;, £;) is in the kernel for each
i % j. The key computation is that the restriction of this map to JTHY™Zi(Z;, L) is injective.
This holds because IC(Z;, L;) is a summand of the pushforward of the appropriately shifted
constant sheaf on V' to Z. O

3. EXAMPLES

By Theorem 1.1, the endomorphism ring of an indecomposable Lefschetz module is a finite
dimensional division algebra over R. We begin with two examples illustrating that both the
field of complex numbers C and the quaternions H can occur.

Example 3.1. Let M 0 be the 4-dimensional real vector space with basis e1, 2, €3, e4, and let M 1
be the 4-dimensional real vector space with basis ef, €3, e¥, eX. Set M = M° ® M*, and let Q be
the symmetric bilinear form defined by
1, ifi=j,
Qes,ef) = J
0, if otherwise.
A linear map M° — M" is given by a 4 x 4 matrix, and Q is invariant under this map if and only

if this matrix is symmetric. Set A := R and

X dy 1
Al = WAl (@) yo (0 Cabe,deRY .
vyt X ¢ b 10

The direct sum A = A° @ A' has the structure of a graded algebra over R. Note that M is
an A-module and that Q is an A-invariant symmetric bilinear form on M. Setting X4 to be
the intersection of A! with the cone of positive definite matrices gives (M, Q) the structure of a
Lefschetz module of degree 1 over (A4, K 4).

The ring of graded A-module endomorphisms of M is identified with the space of matrices
that commute with all matrices in A'. It is easy to check that this space of matrices is spanned
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by the identity and the matrix

J = 02 I , where 0y = 00 and I, = Lo .
—I, 0 0 0 0 1

As the algebra spanned by the identity and J is isomorphic to the complex numbers C, we see

that M is indecomposable and has endomorphism ring isomorphic to C. o
Example 3.2. Let M° be the 8-dimensional real vector space with basis eq, ez, ..., eg, and let M 1
be the 8-dimensional real vector space with basis e¥, ¥, ..., ef. Set M == M°@® M, and let Q be

the symmetric bilinear form defined by

1
Qesef) =13
0, if otherwise.

if i = 7,

A linear map M — M! is given by an 8 x 8 matrix, and Q is invariant under this map if and
only if this matrix is symmetric. Set A’ := R and

X ey dY fY
Yyt X Y dyt? 1
Al — e ) t f X = a c LY = 0 ,a,be,d,e, feR
dyt fy X eY c b 1 0
Yt dy eyt X

The direct sum A = A° ® A' has the structure of a graded algebra over R. Let X, be the
intersection of A' with the cone of positive definite matrices. Note that (M, Q) is a Lefschetz
module of degree 1 over (A4, K 4). A lengthy computation shows that the space of matrices that
commute with A’ is spanned by the identity, J, K, and JK, where

09 0o Io 09 0O 0o 0o Io

I —1I
g 09 Oy 09 2 and K — 02 02 2 09
—15 0o 0Oz 09 (05} I 0o 0o

02 —Ig 02 02 _12 02 02 02

As the algebra spanned by the identity, J, K, and JK is isomorphic to the quaternions H, we
see that M is indecomposable and has endomorphism ring isomorphic to H. o

Because an indecomposable Lefschetz module M is a graded vector space over its endomor-
phism ring, the endomorphism ring of M is 1-dimensional if M 0 is a 1-dimensional real vector
space.

The next example shows that the conclusion of Theorem 1.2 may fail if one works with coef-

ficients in Q instead of R.

Example 3.3. Let M 0 be the 2-dimensional rational vector space with basis ey, ez, and let M L be
the 2-dimensional rational vector space with basis e}, e}. Set M = M° @ M!, and let Q be the
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symmetric bilinear form defined by

1, ifi=j
Qe ) = ’
0, if otherwise.

A linear map M 0 > Mlis given by a 2 x 2 matrix, and Q is invariant under this map if and only
if this matrix is symmetric. Set A° := Q and

1 a b
A '_{<b a+2b> a’beQ}'

The direct sum A := A% @ A' has the structure of a graded algebra over Q. Note that M is an A-
module and that Q is an A-invariant symmetric bilinear form on M. Let X 4 be the intersection
of A! ®g R with the cone of positive definite matrices. Then (M ®q R, Q) has the structure of a
Lefschetz module of degree 1 over (A ®g R, K 4).

The ring of graded A-module endomorphisms of M is identified with the space of matrices
that commute with all matrices in Al. It is easy to check that this space of matrices is spanned

Dz(j D.

The ring of graded endomorphisms of M is isomorphic to Q[+/2], and hence M is an indecom-

by the identity and the matrix

posable graded A-module, but there is an extra A-invariant symmetric bilinear form given by
(z,y) — Q(Dz,y). Note that M ®q R is decomposable over A ®g R, and each of its indecom-
posable summands has an essentially unique nonzero A-invariant symmetric bilinear form. o

We give examples of the decomposition package.

Example 3.4. The Fano matroid F% is the matroid on seven elements whose bases are the three-
element subsets that are not collinear in the following picture of the Fano plane:

1

3 4 5

Let A be the graded Mobius algebra of I, and let K 4 be the set of positive linear combinations
of the generators y1, . . ., y7. One can check that the symmetric bilinear pairing on A given by the
multiplication gives A the structure of a Lefschetz module over (A4, X 4). This is a special case of
the statement that the intersection cohomology module of a matroid is a Lefschetz module over
the graded Mobius algebra [BHM ™b].
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Let B be the subalgebra of A generated by the elements y1,ys, ys,y7. There are infinitely
many different decompositions of M := A into indecomposable graded B-modules, each of
which has three summands. One of the three summands is common to all the decompositions,
the one-dimensional summand spanned by

=Yy —Y2+¥y3s—Ys+ Y5 — Y6 + Y7.

For example, M = S1 @ S2 ® S3, where Sy, 52, S3 are graded B-submodules of M given by

S? = span(y12334567), S5 =0, S35 =0,
512 = span(y123, Y147, Y156, Y257, Y345, Y367) s S% =0, Sg = span(y21),
ST = span(y1, ys, Ys, Y7, Y2, Y4 — ), S5 = span(n), S3 =0,
SY = span(yg), S5 =0, 53 =0.

We also have M = T @T» ® T3, where T, T5, T3 are graded B-submodules of M given by

T} = span(y12334567), Ty =0, T3 =0,

T} = span(y123, Y147, Y156, Y257, Y345, Y367) T5 =0, T = span(yan),
T! = span(y1,ys, ys, Y7, Y4, Y2 — Y6), T, = span(n), T3 =0,
T} = span(yz), 13 =0, 73 =o0.

Note that S; ~ T} and S3 ~ T3 as graded B-modules, and S; = 7. One implication of Theo-
rems 1.2 and 1.4 is that, for any decomposition of M into indecomposable graded B-modules

M = Nl@NQ@Ng with dlmNQ = dlmN3 = 1,

the restriction of the Poincaré pairing Q on M to N; is nondegenerate, and (IV1, Q) satisfies the
Hard Lefschetz property and the Hodge-Riemann relations with respect to (B, Xp). o

Example 3.5. Let A be the graded Mobius algebra of F7 as above, and let B be the subalgebra of
A generated by the elements y1, y3 + y5, and y2 + y4 + ys + y7. In this case, M := A decomposes
uniquely’ into indecomposable graded B-modules N; ® No, where

N} = span(y12334567), N3 =0,

N12 = span(y147, Y246, Y345, Y123 + Y156, Y257 + Y367), N22 = span(y123 — Y156, Y257 — Y367);
N = span(yy,ya, Y7, Y3 + Ys, Y2 + Ys), Ny = span(ys — s, Y2 — Ys),

NY = span(yz), NY =0.

That N, is an indecomposable graded B-module follows from the property that

N3 = span(y1,ys + Ys, Y2 + ya + ys + y7) - € for any nonzero & € N;.

SIn general, a decomposition of M into indecomposable graded B-modules is unique up to isomorphism of its
summands, but not necessarily uniquely determined, as illustrated in Example 3.4. In the present case, however, the
uniqueness follows from the fact that every summand shares the same middle degree, or, equivalently, that there is an
element of X g satisfying the Hard Lefschetz theorem on M, and so the perverse filtration is trivial.
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That N; satisfies the Hodge-Riemann relations with respect to X5 is equivalent to the statement

(a e ‘e > is positive definite for any a, b, c > 0.
a—c a+2b+c

In the previous example, each indecomposable Lefschetz module appearing in the decomposi-
tion of M had a lowest-degree nonzero homogeneous component of dimension 1. In the current
example, we see that indecomposable Lefschetz modules with lowest-degree components of di-
mension 2 may appear in the decomposition of M. o

While the main examples of Lefschetz modules come from algebraic geometry, there are Lef-
schetz modules which provably do not appear inside the cohomology of a compact Kéhler man-
ifold or a smooth projective variety.

Example 3.6. Consider the cubic polynomial in three variables
flwr,we,ws) = 14w£1)’ + 6w%w2 + 24w%w3 + 12w wows + 6w1u)§ + 3w2w§,

and let A be the graded algebra over R cogenerated by f. In other words, A is the unique
quotient of R[z1, 2, 73] equipped with a map deg: A3 — R such that the bilinear maps A° x
A% —» Rand A! x A? — R are nondegenerate and

deg((w1r1 + waws + w3$3)3) = f(wi, w2, w3).

Using that f is a Lorentzian polynomial in the sense of [BH20], one can check that A is a Lefschetz
module over (4,R32 ). However, A4 is not a subquotient of the ring of real (p,p) forms on a
3-dimensional compact Kéhler manifold nor of the Chow ring modulo numerical equivalence
of a 3-dimensional smooth projective variety over an algebraically closed field because f does
not satisfy the reverse Khovanskii—Tessier inequality of [LX17, JL23], see [Huh23, Example 14]. ¢

4. THE PERVERSE FILTRATION

In this section, we establish some fundamental properties of the perverse filtration 0 € P, <
.-+ © Paog = M. As mentioned in the introduction, Theorem 1.3 implies that the perverse
filtration can be defined using any B-module decomposition of M. However, we will not be
able to prove this until after establishing the main theorems.

Choose some ¢ € K. For e > 0, let C. = R[¢]/(¢!) be the cyclic graded R[¢]-module which

is generated by 1 € C?. Fix a decomposition of M into indecomposable R[/]-modules:

(4.1) M ~ @ C.[—k]Pmeh).,
e,k

Recall that P; is spanned by the summands C,[—k]®"(¢*) with e + 2k < j. From the alternative
description of the perverse filtration in (1.2), we see that the perverse filtration is independent
of the choice of R[¢]-module decomposition.
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4.1. Module structures. The following lemma endows Gr with a natural A-module structure,
with multiplication denoted by *: A x Gr — Gr such that A% * Gr'*/ € Gr' 57425,

Lemma 4.1. For each s and j, A°P; < Pjo.

Proof. By (1.2), P; n M* is spanned by elements of the form ¢*~°m, where m € M€ is an element

j+1—k—c

which satisfies ¢ m = 0. Then for any a € A?, the element

a-F=om = psth=(st9q .

lies in (CHR) =+ N ~ ann g (07251 (5FR)=(s+e)) 1 Nrs+F which is contained in Pjjo5 1 M3+E

by (1.2), as required. O

We now show that Gr* is a B-module for each j. The following lemma is automatic from
the description of the perverse filtration in terms of the chosen R[¢]-module decomposition.

Lemma 4.2. For each j, we have (P; < P;.

We will need the following result, which was proved in the setting of variations of polarized
Hodge structures in [CK82, Theorem 3.3]. By [Cat08, Theorem 3.1], this implies the following
result for Lefschetz modules.

Proposition 4.3. The perverse filtration is independent of the choice of £ € X .

Proof. By [CK82, Theorem 3.3] and [Cat08, Theorem 3.1], the weight filtration W_; € W_g44;1 <
- € Wyq—1 € Wy = M associated to ¢ is independent of the choice of ¢ € Xp. The statement

Wi~ MF. ]

now follows by observing that P; = >, ,,

As K p is open, this implies that the action of B! preserves the perverse filtration. Because
B is generated in degree 1, we deduce the following, which gives each Gr*” the structure of a
graded B-module.

Corollary 4.4. For any b € B and any j, bP; < P;.

From the description of the perverse filtration in terms of the chosen R[¢]-module decompo-
sition, we have an identification

Gl x P C[-kOmEh,

e+2k=j

In particular, we have the following corollary.

Corollary 4.5. Forany { € X, each 0 < j < 2d, and eachi < j/2, the map #~%": Gr'’ — G/ ="/
is an isomorphism.
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4.2. The 1-dimensional summands. We give a concrete description of a submodule of Gr,
which we will make use of later. Let

N = @ Co[—k]®™OR < M
k

be the direct sum of the 1-dimensional R[¢/]-module summands in the chosen R[{]-module de-
composition of M. The restriction of the perverse filtration to N coincides with the filtration
induced by the grading on M, and so N is identified with its image in Gr. Then N admits the
following simple description:

anny (£)

N=__ "M
LM ~annyy ()

In fact, N coincides with the kernel of the map Gr*?* — Gr**"?* induced by multiplication by
¢. It is therefore an A-submodule of Gr, and the above is an equality of A-modules.

4.3. The descent lemma. Given a € A*, we consider the A-module M, = M/annys(a). Let
w: M — M, be the quotient map. This A-module is equipped with an A-invariant bilinear form
Qq: M, x M, — R which is defined by the property

Q(p(x),0(y) = Az,ay)  VYa,ye M.

In particular, Q,: M x MJ — R vanishes unless i + j = d — k. By construction, Q,: M} x
Mkt - Ris nondegenerate. The next result from [CKS87, Lemma 1.16] and [Cat08, Theorem
3.2], which is known as the descent lemma, will be crucial in what follows. It will allow us to
prove statements by induction on the degree of the Lefschetz module.

Lemma 4.6. Let y be an element in the closure of X 4. Then M, = M /anny () equipped with
the bilinear form Q., described above is a Lefschetz module of degree d — 1 over (A, X 4).

We will frequently consider My» = M /ann(¢?) for a nonnegative integer p. By repeatedly
applying Lemma 4.6, we deduce that M», equipped with the bilinear form Qy», is a Lefschetz
module of degree d — p over (A4,K4).

The chosen decomposition (4.1) of M into indecomposable R[¢]-modules induces a decom-
position of M;» into indecomposable R[¢]-modules: we have

(4.2) Mp =~ @ Cop[—k]®™ (),

ek
e=p

4.4. The bilinear form on Gr. We construct a nondegenerate symmetric bilinear form on Gr.
Lemma 4.7. For all i and j, we have

Q(M’L M P]‘,Md_i N P2d—j—1) = 0.
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Proof. Note that M" P; is spanned by elements of the form ¢'~“m, where m € M¢ with (¢*1m =
0 for some e with e + 2¢ < j. Similarly, M d=i P54 ;1 is spanned by elements of the form
04—’ with £¢'+1m/ = 0 for some ¢’ with ¢/ + 2¢ < 2d — j — 1. Then

Q(Eifcm’gdfifc'm/) _ Q(gdfcfc'm’ m/) _ Q(m,gdfcfc’m/).

This vanishes if eithere+1 < d—c—c ore’+1 < d—c—¢. Adding the two equations e +2¢ < j
and ¢’ + 2¢’ < 2d — j — 1 implies that one of these must hold. O

Lemma 4.7 implies that Q descends to a symmetric bilinear form
Q: Gr'/ x Gr™ " R,

We extend Q to a map Gr x Gr — R by setting Q(Gr"7 x Gr+") = 0 unless i + i/ = d and
j+j =2d.

Recall from Section 4.2 that N is the subspace of M spanned by the 1-dimensional summands
in the chosen R[{]-module decomposition, and that it can be identified with anny;(¢)/(¢M n
annyy (¢)), which is naturally a subspace of Gr. Since the perverse filtration on IV coincides with
the filtration induced by the grading, the restriction of the forms Q and 9 to IV can be identified.

Lemma 4.8. The restriction of Q to NV is nondegenerate.

Proof. We need to show that each element m € annj;(¢) which has Q(m,n) = 0 for all n €
annyy () lies in £M. Note that anny, (¢) is the orthogonal complement of £M with respect to Q.
Then (PD) implies that £)M is the orthogonal complement of ann;(¢). O

In particular, we deduce that dim N* = dim N?~%. Recall that m(e, k) is the multiplicity of
C.[—k] in the R[¢]-module decomposition of M.

Proposition 4.9. The form Q is nondegenerate.

Proof. We first show that dim Gr* = dim Gr®=%??77 for all i and j. It follows from Lemma 4.8
that m(0, k) = m(0,d — k). By (4.2), m(e, k) is equal to the multiplicity of Cy[—k] in My.. Using
Lemma 4.6 and applying Lemma 4.8 to My., we deduce that m(e, k) = m(e,d — e — k). This
implies that dim Gr’/ = dim Gr4=%2977,

Choose a basis for M* which is compatible with the perverse filtration on M*. Lemma 4.7
and the above equality of dimensions implies that the matrix representing Q with respect to this
basis is triangular. As Q is nondegenerate, this implies that Q is nondegenerate. O

4.5. Applications of the descent lemma. For v € K 4, let P, . be the perverse filtration on M,,
defined using our chosen element £ € X . Let Gr,, be the associated graded of M., with respect
to the perverse filtration. Let ¢): M — M be the quotient map associated to /.

Proposition 4.10. The quotient map ¢: M — M, satisfies )(P;) = Py ;_; for all j. The induced
map Gr: Gr'J — Grz’j_1 is an isomorphism if i < j/2.
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Proof. It M ~ @, ;, Cc[—k]®™(“H) is the fixed R[/]-module decomposition of M, then ¢(C.[—k]) =
C._1[—k], where C_; is interpreted as 0. By (4.2),

My ~ @06_1[—k]®m(e’k)
ek

is an R[¢]-module decomposition of My. As C.[—k] lies in P.;of and Ce_1[—k] lies in Py ¢4 ak—1,
this implies that ¢)(P;) = P ;1.
In terms of the chosen decomposition, we have
Gr*l = @ C[-k]®"H and G}/ '= @ P(C[-k]FmER),
e+2k=j et+2k=j

The restriction of ¢ to C.[—k] is an isomorphism in degree i if i < e + k. Since j/2 = e¢/2 + k, we
see that i < e + k, giving the result. O

From the definition of the forms Q on Gr and Q, on Gr/, obtained in terms of lifting to M and
M,, we get the following compatibility.

Corollary 4.11. For all z € Gr'™’ and y € Gr?~ 1247 we have

Q(Grip(x), Gry(y)) = Qz, Ly).

Choose some 1 € K4, and let M,, = M /anny;(n). Let ¢: M — M,, be the quotient map. Note
that (HL) implies that ¢ is an isomorphism in degree less than d/2.

Proposition 4.12. The map ¢: M — M,, satisfies ¢(P;) < P, ;. The induced map Gr¢: Gr'/ —
Gr;’j is injective if j < d.

Proof. That p(P;) < P, ; follows from the description of the perverse filtration in (1.2). Choose
some / € K, and note that Corollary 4.5 implies that Gr*~/ and Gr;’j are representations of sly,
where / acts as a raising operator. Furthermore, the map Gr ¢ is a map of representations of sls.
In particular, in order to check that it is injective for j < d, it suffices to check that it is injective
when restricted to ker(¢/~2*1: Gr"J — Gr/~"*17) for each i < j/2.

If i < j/2, then, using Proposition 4.10, we may replace M by M/ ann, (#/=2"); by Lemma 4.6,
this is still a Lefschetz module. So we may assume that j = 2i. By Section 4.2, we have an
identification of A-modules

L Q621 it 12iy LM(@'
Gi—)ker(f. Gr Gr ) = LM ~ annpy (£)

Suppose we have z € ker(¢: Gr'? — Gr'™'%), with i < d/2. Then Gr ¢(z) = 0 if and only if =
is in the kernel of the map

anny (€) annyy, (£)
LM ~ annpy (€) ¢M,, ~annyy, ()
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Le., lifting = to Z € M, we have ¢(&) = (- y for some y € M!~'. Using (PD), we can identify
M,[—1] with nM < M. Then this means thatn - & = n- £y in M*T'. By (HL), as i < d/2, this

implies that & = £ - , so x vanishes in Gr"*, as required. O

From the definitions of the bilinear forms Q and Q,, we have the following compatibility.
Corollary 4.13. For all z € Gr/ and y € Gr?~7127772 we have

9, (Gro(x),Gro(y)) = Az, *y).
5. RELATIVE HARD LEFSCHETZ, RELATIVE HODGE-RIEMANN, AND DECOMPOSITION

In this section, we prove the relative Hard Lefschetz property and the relative Hodge-Riemann
relations, stated in Theorem 1.5 and Theorem 1.7, as well as the Decomposition Theorem 1.10.
We first prove Theorem 1.5 and Theorem 1.7 simultaneously by induction on the degree d of the
Lefschetz module M, and then we deduce Theorem 1.10.

Proposition 5.1. Suppose that Theorems 1.5 and 1.7 hold for every Lefschetz module of degree
at most d — 1. Then, for all 0 < j < d and for all € X4, the linear map
Gr*’ — Gr*td—92d-7 z— 0¥ w g

is an isomorphism.

Proof. We first show that the map is injective. Choose some ¢ € K. By Corollary 4.5, there are
sl actions on Gr*¥ and Gr*t?77-24=7 where / acts as the raising operator, and 7%=/« is a map of
representations of sly. In order to check that this map is injective, it suffices to check that it is
injective on ker(#7=2"*1: Gr*J — Gri~"*17) for each i < j/2. If j = d, then 7+ is the identity,

so we may assume j < d. Suppose we have some element
7€ ker(t 2 Grtd — G ) o er(g e Grtd - G,

Let o: M — M, = M/anny;(n) be the quotient map, and let Gr: Gr — Gr,, be the associated
graded, see Proposition 4.12. By construction, we have

Gr(r) € ker(#772+1 Grf;j - Grff”l’j) A ker(nd I s Gr;’j - Gri,+d_j’2d_j).
Le., Gro(x) lies in the (i, j)th graded piece of the primitive part of Gr,. By induction on the
degree d, we have
(—1)'Q,(Gro(x),n" 77" « 77 Gry(x)) > 0,
with equality if and only if Gr¢(z) = 0. By Corollary 4.13, we have
d—j—1, pj—2i d—j o pi—2i
Q,(Gr(x),n™7 "« 77 Gro(z)) = Q™™ « /7"x) = 0,
so we get that Gr ¢(z) = 0. By the injectivity part of Proposition 4.12, we get that z = 0.
We have shown that %7« is injective. Multiplying by ¢/~2! and using Corollary 4.5, we have
an injection
nd—j % gj—Qi: Gri,j N Grd—i,Qd—j )
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By Proposition 4.9, dim Gr*/ = dim Gr? "%~ so this map is an isomorphism. This proves that
7?7 % is an isomorphism. O

Once we know that the conclusion of Proposition 5.1 holds for a Lefschetz module M, then
we may decompose Gr into primitive pieces as in (1.5).

Proposition 5.2. Suppose that Theorem 1.5 and Theorem 1.7 hold for every Lefschetz module
of degree at most d — 1. If (¢, ) & (d/2,d), then for any € X4 and any ¢ € X, the symmetric
bilinear form on Gr*’ defined by

(2,y) — (=1)'Q(z,n? 7 « (I~ 2iy)

is positive definite when restricted to Prim*.

Proof. Let x € Prim"’ be a nonzero element. First suppose that j < d. Then, by Proposition 4.12,
there is an injective map Gr: Gr/ — Grf{j . Because Theorem 1.7 holds for M,,, noting that
Gr ¢(x) remains primitive, we have that

(=1)'Q, (z,n? 7L « ¢97%2) > 0.

=n
The result then follows from Corollary 4.13. The case when j = d, but i < d/2 is identical, except
using Proposition 4.10 and Corollary 4.11. O

d/2,d

We now deal with the remaining primitive part, Prim®““, in the case when d is even. We

do this by an analysis of the signature of the restriction of Q to Gr#/2*. A different approach to
the same problem is given in [dCMO05, Section 5.4]. We begin by computing the signature of the

restriction of Q to Gr#/?*.

Proposition 5.3. The signature of the restriction of Q to Gr¥/?* is

d/2

D (=1)(dim M* — dim M),

i=0
Proof. Let b; = dim Gr¥?%7 . Note that Proposition 4.9 implies that b; = bag—;. Letr; = > _; be,
and let r = dim M%2. Choose a basis z1, z, . . ., z, for M%? so that Tr, 415, Tp, liein P

M92; then the x; also give a basis for Gr#/?*

. Let T be the symmetric matrix with T; =
Q(z,x¢), so T represents the restriction of Q to M %2, Note that (HR) implies that the signature

of T'is

d/2

D (=1)(dim M* — dim M),

i=0
We can divide T into blocks, representing how different pieces of the perverse filtration pair
with each other. By Lemma 4.7, T vanishes northwest of the blocks along the main antidiagonal,

which represent the pairing of complementary pieces of the perverse filtration.
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The matrix representing the restriction of Q to Gr®**

is obtained by setting the entries in
the blocks below the antidiagonal to 0. In particular, Q has the same signature as Q, giving the

result. O

Assuming Theorem 1.5 and 1.7 for all Lefschetz modules of degree at most d — 1, Proposi-
tion 5.1 and 5.2 imply that we have a decomposition

Gré/®e = @ P =t Prim® .
j<d s<d—j
i<j/2 t<j—3i
s+t=d/2—i
This decomposition is close to being orthogonal with respect to Q: we have
Q(n® * £ Prim"7 n® w0 Primi/’jl) =0

unlessi =i, j = j/, s+ =d—j,and t +t = j—2i. We group the summand 7* = ¢* Prim® with

0
where U is symmetric, is always 0, a summand where s + d — j — s (which is equivalent to

, . > 0 U
the summand 7?=7=* » ¢/=2/~! Prim"/. Because the signature of a matrix of the form . ),

t + j — 2i — t) contributes 0 to the signature. In particular, the signature of Q is the same as the

signature of the restriction of Q to Gr#??, The decomposition of Gré/?4

Gr#/?4 — @ n(dfj)/Q % (91271 Prim® |

is simpler: we have

j<deven
i<j/2
Lemma 5.4. We have
d/2
D=1/ (dim M' — dim M) = (=1)" dim Prim*/ .
=0 j<deven

i<j/2

Proof. We decompose M as in (1.5) and compute the contribution to the left-hand side of the
terms associated to Prim*’. For each p, the dimension of the sum of the pieces associated to
Prim*’ in Gr™* is dim Prim"/ times the number of pairs (s,t) with s +t =p —i,0 < s < d — j,
and 0 <t < j — 2i.

The number of such pairs is 0 for p < i, increases by one when we increase p by one until p
reaches min(d — j, j — 2¢) (which happens for some p < d/2), and then is constant until p reaches
d/2. We see that the contribution to the left-hand side of the terms associated to Prim*” is

Z (1) dim Prim™ .
0<g<min(d—j,j—2i)
Note that, because d is even, d — j and j — 2 both have the same parity as j, so this sum is 0 if j
is odd and is (—1)" dim Prim"’ if j is even. O

Proposition 5.5. Suppose that Theorem 1.5 and Theorem 1.7 hold for every Lefschetz module
of degree at most d — 1. Suppose that d is even. Then, for any 1 € X4 and ¢ € K p, the restriction
of (—1)%2Q to Prim%?4 is positive definite.
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Proof. Let n be the signature of Q on Prim**?. By Proposition 5.3 and Lemma 5.4, the signature
of Q on Gr¥?* is

d/2
DU=Di(dim M* — dim M) = ) (1) dim Prim*7 |
1=0 j<deven

i<§/2
On the other hand, using Proposition 5.2 and the discussion above about the decomposition
being nearly orthogonal with respect to Q, the signature of Q on Gr¥/** is
n+ Z (—1)" dim Prim™7 .
j<deven

i<j/2
(4,5)%¥(d/2,d)

Comparing these expressions gives that n = (—1)%2 dim Prim¥*<, O

Proof of Theorem 1.5 and Theorem 1.7. We induct on d. Both statements are trivial when d = 0.
If Theorems 1.5 and 1.7 hold for all Lefschetz modules of degree at most d — 1, then Proposi-
tions 5.1, 5.2, and 5.5 imply that the conclusions of Theorem 1.5 and Theorem 1.7 hold for all
n € K4. Viewed as a subset of A!, the action of B! on Gr is 0. Then the result follows, as
n € X 4,p if and only if there is b € B such thatn + b € K 4. O

We now prove Theorem 1.10. We show that it is a formal algebraic consequence of Theo-
rem 1.5, following ideas of Deligne [Del68]. See also [VdB04, dC13].

Proof of Theorem 1.10. Choose n € X 4,5. We produce a splitting as a graded R-module of the
inclusion P — M by the following composition:

d dy—1
MM Gt = M Py, s P,

This induces a direct sum decomposition M = Py@M' = Gr*' @M’ as graded R-modules. The

perverse filtration on M restricts to a filtration on M’ whose associated graded is @3¢, Gr®.

e 2d

We have a splitting of the map M’ — Gr*““ given by the composition

d

og (M7 0 n
Gr* Gr® M M M.

This induces a direct sum decomposition M’ = Gr*?* ®M" as graded R-modules. Through the
same procedure, we can split off Gr** and Gr®??~!, and so on. This proves the theorem. O

6. DUALITY, POLARIZATION, AND SIMPLICITY

In this section, we prove Theorems 1.1, 1.2, 1.3, and 1.4. Our strategy is to use Theorem 1.5
and Theorem 1.7 to construct a bilinear form on N,, so that it is a Lefschetz module over (B, X ).
This proves Theorem 1.3. We then use this Lefschetz module and results of Looijenga—Lunts and
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Verbitsky [LL97, Ver95] to prove Theorem 1.1. We then use this to deduce the uniqueness of the
bilinear form, proving Theorem 1.2 and 1.4.

Before continuing, we will need to establish some elementary facts about Lefschetz modules.
The following two lemmas are immediate.

Lemma 6.1. Let NV be a Lefschetz module of degree e over (B, Xp), equipped with a bilinear
form Qn. Let k € Z be such that N[—k]; = 0 for all i < 0. Then N[—k], equipped with the
bilinear form (—1)*Qy, is a Lefschetz module of degree e + 2k over (B, Xp).

Lemma 6.2. Let N7 and N, be Lefschetz modules of degree e over (B,Xpg), equipped with
bilinear forms Q; and Q,. Then N; @ N, equipped with Q; @ Q,, is a Lefschetz module of
degree e over (B, Xg).

We will also need the following result.

Lemma 6.3. Let N be a Lefschetz module of degree e over (B,Xg), equipped with a bilinear
form Qu. Then any graded B-module summand of N, equipped with the restriction of Qy, is a
Lefschetz module of degree e over (B, Xg).

Proof. Suppose we have a graded B-module decomposition N = N; @ N,. For each i < e/2 and
{ € X, the map Ni — N{~* given by multiplication by ¢°~2' is injective, so dim N} < dim N{ ™.
Similarly, dim N} < dim N5, As dim N* = dim N} + dim N} and dim N* = dim N°~* by (HL),
we see that dim N{ = dim Nf_i, and so (HL) holds for N;. For any ¢, we have

ker(£¢7%H1: Ni — NeTF) = N A ker(067 2L N NeTitly,

In particular, by (HR) for N, Qy is definite on this subspace of N}. This implies (PD) and (HR)
for N1, and the lemma follows. O

6.1. Duality. Choose n € X4,5. By Theorem 1.5, we have a primitive decomposition with
respect to 7, as follows. Set K = ker(n=/*1: Gr*/ — Gr**47/*12477+2) Then we have a
decomposition
(6.1) Gr ~ @ @ n' % K%

0<j<d 0<i<d—j

Because 7+ is a map of B-modules, this is an isomorphism of B-modules.

We equip each Kﬁi with the symmetric bilinear form (z,y) — Q(z,7%7 % y). Recall that by
Corollary 1.8, each K% is a Lefschetz module of degree j over (B, Xp).

Proposition 6.4. Each N, admits a B-invariant symmetric bilinear form Q,: N, x Ny, — R so
that it is a Lefschetz module of degree d(«) over (B, Xg).

Proof. Refine the decomposition given in (6.1) of Gr into a decomposition into indecomposable
B-modules. By Theorem 1.10, Gr is isomorphic to M as graded B-modules, so by the Krull-
Schmidt theorem, some summand must be isomorphic to a shift of N,. For each i, n’ = K% is
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either isomorphic to K% as B-modules or is 0. The primitive decomposition then implies that
there is some k and j such that N,[—k] is a summand of KZ7 ; we must have 2k + d(a) = j.

By Lemma 6.3, N,[—k] is equipped with a bilinear form that gives it the structure of a Lef-
schetz module of degree 2k + d(«) over (B, Xg). The result then follows from Lemma 6.1. O

Although we do not yet know the uniqueness of the symmetric bilinear form, and so we
cannot formulate Theorem 1.4, we know enough to prove Theorem 1.3.

Proof of Theorem 1.3. This is immediate from Proposition 6.4 O

6.2. Simplicity. We now associate a Lie algebra to a Lefschetz module N of degree e over
(B, Xg), using a construction introduced by Looijenga-Lunts and Verbitsky [LL97, Ver95].

For each ¢ € K, the fact that multiplication by ¢¢~%: N* — N°~ is an isomorphism means
that there is a corresponding representation of the Lie algebra sl;, where the raising operator
corresponds to multiplication by ¢. Let gy be the Lie subalgebra of End(/N) generated by the
raising and lowering operators associated to all £ € X . The following result was proved inde-
pendently by Looijenga-Lunts and Verbitsky.

Proposition 6.5 ([LL97, Proposition 1.6]). Let N be a Lefschetz module of degree e over (B, Kp).
If e > 0, then g is a semisimple Lie algebra.

The Lie algebra gy has a distinguished semisimple element H, the common semisimple ele-
ment in all of the sl; triples that generate gx. The action of H on NN records the grading.

If Ny, N are Lefschetz modules of degree ¢, then, by Lemma 6.2, N = N; @ N, is a Lefschetz
module of degree e. The action of gy preserves N; and N, and we see from the construction of
g that there are surjective homomorphisms gy — gy, and gy — gn,.

We will now show that, in many cases, morphisms of B-modules between Lefschetz modules
of the same degree can be upgraded to morphisms of representations of these Lie algebras.

Proposition 6.6. Let Ny, Ny be Lefschetz modules of degree e over (B,KXp). Let ¢: Ny — Ny
be a map of abelian groups. Then ¢ is a map of graded B-modules if and only if it is a map of
9N, @N, representations.

Proof. First suppose that ¢ is a map of gy, gn, representations. This implies that ¢ commutes
with the action of any ¢ € Xp. Because X is open, we see that ¢ commutes with the action
of any b € B'. Because B is generated by B!, we see that ¢ is a map of B-modules. Because
the action of the distinguished semisimple element commutes with ¢, we see that ¢ respects the
grading.

Now suppose that ¢ is a map of graded B-modules. Let I' = N; @ N be the graph of ¢. Itis
enough to show that I is a g, @, -subrepresentation.
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For each ¢ € Xp, we can choose a decomposition of N; into indecomposable graded R[/]-
modules. Because N; satisfies (HL), each summand in the decomposition will be isomorphic to
R[¢]/(¢¥+1)[~k] for some f and k with 2k + f = e. By (HL), every R[¢]-submodule of N> is of the
form R[¢] /(¢ +1)[—k'] for some f” and k" with 2k’ + f’ = e. There is no nonzero homomorphism
of graded R[(]-modules from R[¢]/(¢/+1)[—k] to R[¢]/(¢/"+1)[~k'] unless f' = f and k' = k, so
the action of the raising and lowering operators on N; @ N, must preserve each R[¢]/(¢fT1)[—k]
in I'. This implies I' is preserved by the corresponding sls.

For each ¢ € Xp, the action of the sl commutes with . As these sly subgroups generate
IN,@N,, We see that gy, @n, preserves I'. 0

By Lemma 6.2, a direct summand of a Lefschetz module N of degree e is a Lefschetz module
of degree e. Then Proposition 6.6 implies that this direct summand is a gy subrepresentation.
Because gy is semisimple if e > 0, any gy subrepresentation is a g summand, and so a graded
B-module summand by Proposition 6.6. In particular, we have the following result.

Corollary 6.7. Let N be a Lefschetz module over (B, X ) of degree e. Then N is an irreducible
gn representation if and only if N is indecomposable as a graded B-module.

Proof of Theorem 1.1. By shifting both N, and Ng[—k], we can assume that Ng[—k] is nonnega-
tively graded and so is a Lefschetz module. The statement is clear if e = 0.

We assume that e > 0. If d(«) + 2k = d(3), then N, and Ng[—k] are Lefschetz modules
of the same degree. Let g be the semisimple Lie algebra associated to N, @ Ng[—k]. Because
they are indecomposable, Corollary 6.7 implies N, and Ng[—Fk] are irreducible representations
of g. In particular, Homy(N,, Ng[—k]) = 0 unless they are isomorphic, i.e., unless « = 5. By
Proposition 6.6, this implies that Hompg (No, Ng[—k]) = 0 unless oo = §. If & = 3, then we have
k = 0. Because they are irreducible representations of the semisimple Lie algebra g, we have
Homg(Neq, No) = Homp(Ng, Ny ) is isomorphic to R, C, or H.

Now suppose that d(a)+2k < d(5), and let p: N, — Ng[—k] be a map of graded B-modules.
Choose some ¢ € Xp. By (HL), N, is generated as a B-module by

U ker(éd(a)72i+1: Né N N(;l(oz)fz#l)'
i<d(a)/2

For any i < d(a)/2 and z € ker(¢4(@=2i+1; Ni —, NI e have (d@)=i+14(2) = 0, so
¢(x) = 0 by (HL) for Ng. This implies that ¢ = 0. O

Proof of Theorem 1.2. In the proof of Proposition 6.4, we have constructed a nondegenerate sym-
metric B-invariant bilinear form Q, which gives IV, the structure of a Lefschetz module. Let
Q' be another symmetric B-invariant bilinear form on N, which respects the grading. Because
Q, is nondegenerate and Q' is B-invariant, there is an endomorphism ¢: N, — N, of graded
B-modules such that, for all z,y € N,, we have Q'(x,y) = Qu(¢(z), y). By Theorem 1.1, the ring
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of graded B-module endomorphisms of IV, is isomorphic to either R, C, or H. If it is isomor-
phic to R, then Q' is a constant multiple of Q,, as desired. Otherwise, we may assume that the
endomorphism ring is isomorphic to either C or H. By replacing Q' by Q' — AQ,, for some X € R,
we may assume that ¢ is purely imaginary (and nonzero). In particular, ¢? = ¢ for some ¢ < 0.
We have

Qa(x’¢(y)) = Qa(d)(y),x) = Q’(y,m) = Q/(l’,y) = Qa(¢(x)’y)a

so ¢ is self-adjoint with respect to Q,. Choose some ¢ € KXp. Suppose that N, has degree e,
and that the lowest nonzero graded piece of N, is N/,. Choose some nonzero z € N{. By
Theorem 1.1, ¢ is an automorphism, so ¢(x) is nonzero. We have

Qu (72 p(x), ¢(2)) = Qu(£°*'w, 6% (2)) = cQa (02, 2).

As ¢ < 0, this contradicts (HR). O

Proof of Theorem 1.4. In Proposition 6.4, we showed that N, has the structure of a Lefschetz mod-
ule over (B, X ) for some B-invariant symmetric bilinear form Q. The definition of a Lefschetz
module implies that (HR) holds for N, when equipped with Q,; we just need to prove the
uniqueness part of Theorem 1.4. By Theorem 1.2, the choice of a B-invariant symmetric bilinear
form is unique up to a constant. As N, + 0, cQ, does not satisfy (HR) for any ¢ < 0, proving
the uniqueness of ¢, in the statement of the theorem. O
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