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ABSTRACT. A Lefschetz module is a module over a graded algebra A that satisfies analogues of
Poincaré duality, the Hard Lefschetz property, and the Hodge–Riemann relations with respect to an
open convex cone K in the degree one part of A. We analyze its decomposition into indecompos-
able modules over subrings of A that are generated by elements in the closure of K, establishing
structural results that parallel the decomposition theorem for morphisms of complex projective
varieties. We use our theorems to recover key statements in combinatorial Hodge theory and to
illuminate the Hodge-theoretic aspects of the decomposition theorem in algebraic geometry.

1. INTRODUCTION

Let A “
À

kě0A
k be a finite dimensional commutative graded algebra over R, and let KA

be a nonempty open convex cone in A1. Let M “
À

kě0M
k be a finite dimensional graded

A-module equipped with a symmetric bilinear form Q : M ˆM Ñ R that is A-invariant:

Qpax, yq “ Qpx, ayq for all a P A and all x, y P M .

We say that pM,Qq is a Lefschetz module of degree d over pA,KAq if it satisfies the following three
properties, called the Kähler package for pQ,KAq:

(PD) The induced bilinear pairing between the graded pieces

Q : M i ˆM j ÝÑ R

is nondegenerate if i` j “ d, and it is zero if i` j ­“ d (Poincaré duality).

(HL) For each nonnegative k ď d
2 and η P KA, the linear map

Mk ÝÑ Md´k, x ÞÝÑ ηd´2kx

is an isomorphism of vector spaces (Hard Lefschetz property).

(HR) For each nonnegative k ď d
2 and η P KA, the symmetric bilinear form

Mk ˆMk ÝÑ R, px1, x2q ÞÝÑ p´1qkQ
´

x1, η
d´2kx2

¯

is positive definite on the kernel of the linear map

Mk ÝÑ Md´k`1, x ÞÝÑ ηd´2k`1x

(Hodge–Riemann relations).
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A classic example of a Lefschetz module of degree d is given by
À

kě0H
k,kpX,Rq, where X

is a compact Kähler manifold of dimension d, and Hk,kpX,Rq “ Hk,k XH2kpX,Rq. Here

Q “ the Poincaré pairing on
à

kě0

Hk,kpX,Rq and KA “ the Kähler cone in H1,1pX,Rq.

In this case, the Kähler package for pQ,KAq is a consequence of the Hodge theory of harmonic
forms [Huy05, Chapter 3].1 Another prominent class of examples comes from the intersection
cohomology of a complex projective variety2 and, assuming Grothendieck’s standard conjec-
tures on algebraic cycles [Gro69], the ring of algebraic cycles modulo homological equivalence
on a smooth projective variety.3 Other examples of Lefschetz modules include the combinato-
rial intersection cohomology of a convex polytope [Kar04], the reduced Soergel bimodule of a
Coxeter group element [EW14], the Chow ring, the augmented Chow ring, and the conormal
Chow ring of a matroid [AHK18, BHM`22, ADH23], as well as the intersection cohomology of a
matroid [BHM`b], and the cohomology of Kähler tropical varieties [AP20, AP25]. See Example
3.6 for a discussion of Lefschetz modules that do not arise from Kähler geometry or algebraic
geometry.

In the remainder of this paper, we suppose that pM,Qq is a Lefschetz module of degree d over
pA,KAq and deduce a number of structural results. Let B be a subalgebra of A generated by a
subset of the closure KA Ď A1, and set

KB – the nonempty open convex cone given by the interior of KA XB1 in B1.

For a graded B-module N , we define the shifted module N r´ks as the direct sum of the vector
spaces N i´k placed in degree i. This is a graded B-module in a natural way.

We work in the category of finite dimensional graded B-modules, and we show that an arbi-
trary decomposition of M into indecomposable objects has a number of remarkable properties
that we call the decomposition package. Choose any decomposition

(1.1) M »
à

α

à

k

Nαr´ks‘mpα,kq

where Nα “ N0
α ‘ ¨ ¨ ¨ ‘N

dpαq
α are indecomposable graded B-modules satisfying

N0
α ‰ 0, Ndpαq

α ‰ 0, and Nα fi Nβ as graded B-modules for all α ‰ β.

By the Krull–Schmidt theorem applied to the category of finite dimensional graded B-modules
[Ati56], the collection tNαu and the multiplicities mpα, kq are independent of the choice of de-
composition of M . We then have the following properties.

1The Hodge decomposition splits HpX,Cq into Lefschetz modules with complex coefficients. For formulations of
our main results over C instead of R, see Remark 2.1 and Theorem 2.12.

2A detailed discussion of the known proofs of the Hard Lefschetz property and the Hodge–Riemann relations in this
case can be found in [dCM09a, Section 3].

3Some of these Lefschetz modules can be defined over a subfield K Ď R. For formulations of our main results over
K and their applications, see Remark 2.2, Proposition 2.8, and Example 3.3.



A DECOMPOSITION THEOREM FOR LEFSCHETZ MODULES 3

Theorem 1.1 (Simplicity). If dpαq ď dpβq ` 2k, then

HomBpNα, Nβr´ksq “

#

R, C, or H, if k “ 0 and α “ β,

0 if otherwise.

Each of the three finite dimensional division algebras over the real numbers R arises as the
endomorphism ring of some Nα; see Example 3.1 for the case of the complex numbers C and
Example 3.2 for the case of the quaternions H.

Theorem 1.2 (Duality). For each α, up to a nonzero constant multiple, there is a unique nonzero
B-invariant symmetric bilinear form Qα on Nα satisfying the orthogonality relation

QαpN i
α, N

j
αq “ 0 unless i` j “ dpαq.

This B-invariant symmetric bilinear form Qα is nondegenerate.

We show that, for each α, the bilinear form Qα gives Nα the structure of a Lefschetz module
of degree dpαq over pB,KBq.

Theorem 1.3 (Hard Lefschetz). For each nonnegative k ď
dpαq

2 and ℓ P KB , the linear map

Nk
α ÝÑ Ndpαq´k

α , x ÞÝÑ ℓdpαq´2kx

is an isomorphism of vector spaces.

Theorem 1.4 (Hodge–Riemann). There exists a unique ϵα P t˘1u such that, for each nonnega-
tive k ď

dpαq

2 and ℓ P KB , the symmetric bilinear form

Nk
α ˆNk

α ÝÑ R, px1, x2q ÞÝÑ p´1qkϵαQα

´

x1, ℓ
dpαq´2kx2

¯

is positive definite on the kernel of the linear map

Nk
α ÝÑ Ndpαq´k`1

α , x ÞÝÑ ℓdpαq´2k`1x.

Throughout the paper, an important role will be played by an increasing filtration

P “

´

0 Ď P0 Ď P1 Ď ¨ ¨ ¨ Ď P2d “ M
¯

called the perverse filtration of M over B, defined as follows: Choose an element ℓ P KB , and
choose a decomposition of M into a direct sum of cyclic graded Rrℓs-modules of the form

dpxq
à

k“0

spanpℓkxq,

where x is an element of degree npxq in M . We then define Pj as the subspace of M spanned by
those summands with dpxq ` 2npxq ď j. Alternatively, we can describe the perverse filtration as

Pj XMk “
ÿ

c

ℓk´cM X annM pℓj`1´k´cq XMk.(1.2)
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It follows from Theorem 1.3 that the perverse filtration P is independent of the choice of
ℓ P KB . Indeed, we can refine the given decomposition of M into indecomposable graded B-
modules to a decomposition into indecomposable graded Rrℓs-modules and observe that, for
each j, we have

(1.3) Pj “
à

dpαq`2kďj

Nαr´ks‘mpα,kq.

In particular, each Pj is a graded B-submodule of M , so multiplication by elements of B pre-
serves the perverse filtration:

bPj Ď Pj for all j and all b P B.

Let Gr –
À

j Pj{Pj´1 be the associated graded of the perverse filtration. Note that

Gr “
à

i,j

Gri,j , where Gri,j – pM i X Pjq{pM i X Pj´1q,

and that Gr has the structure of a graded B-module such that Bk Gri,j Ď Gri`k,j . By construc-
tion, M and Gr are isomorphic as graded B-modules. We set

Vα –
à

k

V k
α , where V k

α – HomBpNαr´ks,Gr‚,dpαq`2k
q.

Let Dα be the division algebra HomBpNα, Nαq. Note that Nα and Vα are modules over Dα. It
follows from Theorem 1.1 and Theorem 1.3 that for each j and each α, the natural map

Nα bDα
V k
α ÝÑ Gr‚,j

is injective when dpαq ` 2k “ j. Therefore, Gr‚,j admits a decomposition

Gr‚,j
“

à

α, dpαq`2k“j

Nα bDα
V k
α .

In particular, dimDα V
k
α “ mpα, kq. It follows that Gr‚,j has a unique “isotypic” decomposition,

where the summands are given by the sum of all submodules of Gr‚,j which are isomorphic to
Nαr´ks (equivalently, the sum of all submodules that are quotients of Nαr´ks).

We now formulate analogues of the relative Hard Lefschetz theorem and the relative Hodge–
Riemann relations using Gr. By Lemma 4.1, we have aPj Ď Pj`2k for each a P Ak, so we have
an A-module structure ˚ : Aˆ Gr Ñ Gr such that

Ak ˚ Gri,j Ď Gri`k,j`2k for all k and i, j.

It is straightforward to check that

(1.4) QpM i X Pj ,M
d´i X P2d´j´1q “ 0 for all i, j,

see Lemma 4.7. We therefore get an induced symmetric bilinear form

Q : Gri,j ˆGrd´i,2d´j
ÝÑ R for all i, j.

Note that Q is both A-invariant and B-invariant:

Qpa ˚ x, yq “ Qpx, a ˚ yq and Qpbx, yq “ Qpx, byq for all a P A and b P B.
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Let KA{B be the open convex cone KA `B1 in A1.

Theorem 1.5 (Relative Hard Lefschetz). For each nonnegative j ď d and η P KA{B , the linear
map

Gr‚,j
ÝÑ Gr‚`d´j,2d´j , x ÞÝÑ ηd´j ˚ x

is an isomorphism of vector spaces.

Note that, for each η P A1, there is a map V k
α ÝÑ V k`1

α induced by η ˚ ´.

Corollary 1.6. For each α and η P KA{B and for each nonnegative k ď pd ´ dpαqq{2, there is an
isomorphism of vector spaces

V k
α ÝÑ V d´dpαq´k

α

induced by ηd´dpαq´2k ˚ ´. In particular, for each α, the multiplicities mpα, kq “ dimDα
V k
α form

a symmetric and unimodal sequence.

For elements η P KA{B and ℓ P KB , and nonnegative integers j ď d and i ď j{2, set

Primi,j
– kerpηd´j`1 : Gri,j Ñ Gri`d´j`1,2d´j`2

q X kerpℓj´2i`1 : Gri,j Ñ Grj´i`1,j
q.

It follows from Theorem 1.3 and Theorem 1.5 that there is a direct sum decomposition

(1.5) Gr “
à

jďd
iďj{2

à

sďd´j
tďj´2i

ηs ˚

˜

ℓt Primi,j

¸

.

Theorem 1.7 (Relative Hodge–Riemann relations). For each η P KA{B and ℓ P KB and for each
nonnegative j ď d and i ď d{2, the symmetric bilinear form on Gri,j defined by

px, yq ÞÝÑ p´1qiQpx, ηd´j ˚ ℓj´2iyq

is positive definite when restricted to the subspace Primi,j .

Corollary 1.8. For each j ď d and η P KA{B , the B-module

kerpηd´j`1 : Gr‚,j
ÝÑ Gr‚`d´j`1,2d´j`2

q

equipped with the form Qpx, ηd´j ˚ yq is a Lefschetz module of degree j over pB,KBq.

Corollary 1.9. For each k ď d and ℓ P KB , the A-module

kerpℓk`1 : Gr‚,2‚`k
ÞÝÑ Gr‚`k`1,2‚`k

q

equipped with the form Qpx, ℓkyq is a Lefschetz module of degree d´ k over pA,KA{Bq.

Let R be the graded subalgebra of A consisting of all elements that preserve the perverse
filtration on M . As observed before, M and Gr are isomorphic as graded B-modules. In fact, a
stronger statement holds.

Theorem 1.10 (Decomposition). As graded R-modules, M is isomorphic to Gr.
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The proof of Theorem 1.10 produces a canonical isomorphism, whose construction depends
on the choice of η P KA{B .4

In Section 2, we give a number of applications of the above theorems to matroids, polytopes,
and projective varieties. Motivated by combinatorial applications, many authors have shown
that certain modules are Lefschetz [McM93, Kar04, EW14, AHK18, Kar19, BHM`22, ADH23,
BHM`b]. Our results, especially Theorem 1.3 and Theorem 1.4, give a tool to produce more
Lefschetz modules from a given Lefschetz module, and we show that several of the above re-
sults can be easily deduced from our work.

Our results can be used to study Lefschetz modules coming from geometry as well. In Sec-
tion 2.4.1, we use our main theorems to verify Grothendieck’s standard conjectures on algebraic
cycles [Gro69] in new cases. In Section 2.4.3, by combining our results with [BBD82], we recover
a result of Saito [Sai88, Sai90] and de Cataldo–Migliorini [dCM05] that provides a polarized
pure Hodge structure on the intersection cohomology of a complex projective variety.

The proofs of our main theorems are inspired by the beautiful work of de Cataldo and
Migliorini on the decomposition theorem [dCM02, dCM05, dCM09b]. Although our inductive
strategy resembles theirs, important differences arise. For instance, while their argument relies
on the Lefschetz hyperplane theorem and the simplicity of certain perverse sheaves, these tools
are not available in our setting.

Acknowledgements. We thank Dave Anderson, Mark de Cataldo, Eduardo Cattani, Ben Elias,
Leonardo Mihalcea, and Geordie Williamson for helpful conversations and insightful com-
ments. Part of this work was carried out at the Korea Institute for Advanced Study, and we
thank them for a pleasant working environment. June Huh was partially supported by the
Simons Investigator Grant.

2. THE DECOMPOSITION PACKAGE IN PRACTICE

In this section, we discuss some variations on the main theorems and give applications.

2.1. Coefficient fields. We provide some remarks on the extensions of the main theorems to
cases where the coefficients of M are different.

Remark 2.1. The results of this paper can be extended to modules with complex coefficients. Let
A and KA be as in Section 1, and set AC “ A bR C. Let M “

À

kě0M
k be a finite dimensional

graded AC-module endowed with a Hermitian form Q : M ˆM Ñ C that is A-invariant:

Qpax, yq “ Qpx, āyq for all a P AC and all x, y P M .

4Following ideas of Deligne [Del94], de Cataldo produces in [dC13] several other distinguished isomorphisms using
the choice of η in the geometric setting.
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We say that pM,Qq is a complex Lefschetz module of degree d over pA,KAq if it satisfies the Kähler
package for pQ,KAq, namely, it satisfies (PD) for the induced complex valued pairings Q : M i ˆ

M j Ñ C, it satisfies (HL), and (HR) holds for all η P KA and k ď d{2: the Hermitian form

Mk ˆMk ÝÑ C, px1, x2q ÞÝÑ p´1qkQ
´

x1, η
d´2kx2

¯

is positive definite on the kernel of the map Mk Ñ Md´k`1 given by multiplication by ηd´2k`1.

Let B and KB be as in Section 1, and set BC “ B bR C. We choose a decomposition of M as
in (1.1), requiring that each Nα is an indecomposable BC-module which is nonzero in degrees
0 and dpαq. Let Nα be the complex vector space Nα endowed with the BC-module structure
in which each element b P BC acts as the complex conjugate b̄ on Nα. Then the analogue of
Theorem 1.1 holds in the sense that, when dpαq ď dpβq ` 2k, then

HomBpNα, Nβr´ksq “

#

C if k “ 0 and α “ β,
0 if otherwise.

The induced form Qα on Nα obtained from the above result is Hermitian, and it is well-defined
up to multiplication by a nonzero constant in C. Moreover, for each α, there is a unique ϵα P S1,
the unit circle in C, such that ϵαQα gives Nα the structure of a complex Lefschetz module of
degree dpαq over pB,KBq. In other words, the analogues of Theorem 1.3 and 1.4 hold.

The perverse filtration in this setting is defined similarly, taking the spans over C. Therefore
the Pj are BC-modules, and so Gr is a graded BC-module with Bk

C Gri,j Ď Gri`k,j . Moreover,
Gr admits a similar AC-module structure. In addition, the orthogonality property (1.4) holds,
inducing a Hermitian form

Q : Gr‚,‚
ˆGrd´‚,2d´‚

ÝÑ C.

This form is both AC-invariant and BC-invariant:

Qpa ˚ x, yq “ Qpx, ā ˚ yq and Qpbx, yq “ Qpx, b̄yq for all a P AC and b P BC.

With these modifications, the statements of Theorems 1.5 and 1.7, as well as Corollaries 1.6
and 1.8 and 1.9 still hold. Finally, letR be the graded subalgebra ofAC consisting of all elements
which preserve the perverse filtration. Then the statement of Theorem 1.10 still holds. ˛

For example, let X be a connected compact Kähler manifold of complex dimension d with
real cohomology HpXq “

À

kě0H
kpX,Rq. The orientation on X induces an isomorphism

deg : H2dpX,Rq Ñ R. Let Q be the symmetric bilinear form on HpXq defined by px, yq ÞÑ

degpxyq, i.e., the Poincaré pairing. For each nonnegative integer k, the kth cohomology with
complex coefficients of X is equipped with a Hodge decomposition

HkpX,Cq “
à

p,qě0
p`q“k

Hp,q.

For each k, letHk,kpX,Rq be the intersection ofH2kpX,Rq withHk,k. LetA “
À

kě0H
k,kpX,Rq,

so AC “
À

kě0H
k,k, and let KA be the Kähler cone in H1,1pX,Rq. For each integer n, let Mn be
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the graded A-module defined by Mn “
À

kě0H
k`n,k. We endow Mn with the Hermitian form

Qn : Mn ˆMn ÝÑ C, Qnpα, βq “ inQpα, β̄q, where i “
?

´1.

Then each pMn,Qnq is a complex Lefschetz module of degree d ´ n over pA,KAq. We refer to
Section 2.4.2 for more on Lefschetz modules with a Hodge structure.

Remark 2.2. Some Lefschetz modules have natural Q-structures. For example, this is the case
for the cohomology of a connected smooth complex projective variety if the cohomology is
generated by algebraic cycles, the Chow ring of a matroid, or the reduced Soergel bimodule of
a Weyl group element. ˛

2.2. Applications to matroids. In recent years, significant progress in matroid theory has been
achieved by proving that certain combinatorially defined modules are Lefschetz, see [AHK18,
ADH23, BHM`b]. Several of these results can be recovered or extended using the main theo-
rems of this paper. Let M be a matroid of rank d on E “ t1, . . . , nu. For each 0 ď k ď d, let
LkpMq denote the set of flats of M of rank k.

Theorem 2.3. For any k ď j ď d´ k, we have |LkpMq| ď |LjpMq|.

Theorem 2.3 was conjectured in [DW74, DW75], proved for realizable matroids in [HW17],
and established in full generality in [BHM`b]. Its best known special case is the de Bruijn–Erdős
theorem on point-line incidences in projective planes [dBE48]:

Let E be a set of points in a projective plane that is not contained in any line. Then there
are at least |E| distinct lines that intersect E in at least two points.

We now show how Theorem 2.3 can be deduced from the main results of this paper.

Let HpMq denote the graded Möbius algebra of M. As a graded vector space, we have

HpMq “

d
à

k“0

˜

à

FPLkpMq

RyF

¸

,

where the degree of yF is the rank of F . The multiplication is given by the formula

yF yG “

$

&

%

yF_G if rkpF q ` rkpGq “ rkpF _Gq,

0 if otherwise.

Note that HpMq is generated as an algebra by the elements yi for each rank 1 flat i, and that
the dimension of HkpMq is the number of rank k flats of M. In [BHM`22], the authors con-
struct a graded algebra ApMq, called the augmented Chow ring of M, which contains HpMq as
a subalgebra. By [BHM`22, Theorem 1.3], the augmented Chow ring ApMq is equipped with
an open cone KApMq in its degree one part and a map deg : ApMq Ñ R such that the pairing
Qpx, yq “ degpxyq gives pApMq,Qq the structure of a Lefschetz module of degree d over ApMq

with respect to KApMq. Furthermore, each yi lies in the closure of KApMq.
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Choose a decomposition of ApMq into indecomposable graded HpMq-modules. Let IHpMq

denote the unique summand which intersects the degree 0 part of ApMq, so IHpMq contains
HpMq. By the Krull–Schmidt theorem applied to the category of finite dimensional graded
HpMq-modules [Ati56], IHpMq is well-defined up to isomorphism of graded HpMq-modules.
Let KHpMq denote the interior of KApMq X HpMq, which contains the set of all positive linear

combinations of the yi, i.e.,
!

řn
i“1 ciyi : ci ą 0 for all i

)

.

Proof of Theorem 2.3. The main theorems of this paper show that pIHpMq,Q|IHpMqq is a Lefschetz
module over pHpMq,KHpMqq of degree d. Theorem 1.3 states that multiplication by p

ř

yiq
d´2k

induces an isomorphism from IHkpMq to IHd´kpMq. In particular, multiplication by p
ř

yiq
d´2k

induces an injection from HkpMq to Hd´kpMq, as multiplication by
ř

yi preserves the submod-
ule HpMq of IHpMq. This implies the desired inequality. □

In [BHM`b], the proof of Theorem 2.3 was achieved by giving an explicit construction of
IHpMq as a submodule of ApMq and proving directly that it is a Lefschetz module. One of
the other main results of loc. cit., [BHM`b, Theorem 1.9], is the identification of the Hilbert
series of IHpMq with the recursively-defined Z-polynomial of a matroid [PXY18]. In particular,
this proves that the coefficients of the Z-polynomial are nonnegative, which is not clear from
the definition. Furthermore, if m is the ideal of positively graded elements in HpMq, then the
Hilbert series of IHpMq{mIHpMq is the Kazhdan–Lusztig polynomial of M, a recursively-defined
polynomial which was introduced in [EPW16], and so the coefficients of the Kazhdan–Lusztig
polynomial of M are nonnegative as well.

One key tool in the computation of the Hilbert series of IHpMq and IHpMq{mIHpMq in
[BHM`b] is the following statement [BHM`b, Lemma 6.2]. For a flat F of M, let MF denote
the contraction of M at F .

Proposition 2.4. As graded vector spaces, yF IHpMq is isomorphic to IHpMF qr´ rkpF qs.

This result is proved in loc. cit. only after giving an explicit construction of IHpMq. In the
forthcoming work [BHM`a], the authors give a direct algebraic proof of Proposition 2.4. Using
Proposition 2.4, we can compute the Hilbert function of IHpMq and IHpMq{mIHpMq without
further input. We begin with a general result about Lefschetz modules.

Proposition 2.5. Let pM,Qq be an indecomposable Lefschetz module of degree d over pA,KAq.
If d is even and M is not concentrated in degree d{2, then for any nonzero x P Md{2, there is
some a P A of positive degree such that ax is nonzero.

That is, an indecomposable Lefschetz module has no socle in its middle degree unless it is
concentrated in middle degree.

Proof of Proposition 2.5. Let S be the subspace of Md{2 consisting of elements such that, for all
a P A of positive degree, we have ax “ 0. Note that S is a graded A-submodule of M . Choose
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some η P KA. For any nonzero x P S, (HR) gives that p´1qd{2Qpx, xq ą 0 as ηx “ 0. In
particular, the restriction of Q to S is definite and therefore nondegenerate. Therefore, if we set
M 1 “ ty P M : Qpx, yq “ 0 for all x P Su, thenM “ M 1 ‘S. Note thatM 1 is a nonzero gradedA-
submodule as M is not concentrated in degree d{2. Because M is indecomposable, this implies
that S “ 0. □

We can use Proposition 2.5 to recover a key vanishing statement from [BHM`b, Proposition
1.7].

Proposition 2.6. The Hilbert series of IHpMq{mIHpMq has degree less than d{2.

Proof. Note that (HL) implies that tx P IHpMq : mx “ 0u vanishes in degree strictly less than
d{2. As IHpMq is indecomposable by definition, Proposition 2.5 implies that tx P IHpMq : mx “

0u vanishes in degree d{2. The bilinear form Q induces a perfect pairing between IHpMq{mIHpMq

and tx P IHpMq : mx “ 0u, which gives the result. □

From Proposition 2.4 and Proposition 2.6, one can then use elementary algebraic considera-
tions to derive a recursion for the Hilbert series of IHpMq and IHpMq{mIHpMq. This recursion
implies that the Hilbert series coincide with the Z-polynomial and Kazhdan–Lusztig polyno-
mial of M, see [BHM`b, Proof of Theorems 1.2 and 1.3].

Additionally, the main theorems can be applied in a number of other settings related to ma-
troids. For example, in [BHM`22, Theorem 1.4], the authors study the decomposition of the
Chow ring and augmented Chow ring of a matroid as a module over the subring generated by a
particular element in the boundary of K. Theorem 1.5 and Theorem 1.7 immediately give conse-
quences for this decomposition. The authors also study the decomposition of the (augmented)
Chow ring of a matroid as a module over the (augmented) Chow ring of a matroid deletion
[BHM`22, Theorem 1.1 and 1.2]. As the (augmented) Chow ring of the matroid deletion is a
subring which is generated by elements in K, Theorem 1.5 and Theorem 1.7 immediately give
consequences for this decomposition.

2.3. Applications to polytopes. For a full-dimensional polytope in a real vector space W , the
associated normal fan is a polyhedral fan in the dual space which is equipped with a strictly
convex piecewise-linear function. Such a fan is called a projective fan. If the polytope has ratio-
nal coordinates with respect to some Q-structure on W , one can then associate a projective toric
variety to this projective fan. Beginning with the work of Stanley [Sta80, Sta87], the fact that
the intersection cohomology of a projective toric variety is a Lefschetz module has been used to
deduce several combinatorial inequalities satisfied by polytopes, corresponding to the nonneg-
ativity and unimodality of the intersection cohomology Betti numbers of the toric variety.

However, it is not always possible to choose a Q-structure on W so that the polytope has
rational coordinates. In this case, there is no associated toric variety. It was an outstanding open
problem to show that the same inequalities hold for all polytopes until it was resolved by Karu
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[Kar04], building on the earlier works [McM93, BBFK02, BL03]. This was done by constructing
an analogue of the intersection cohomology purely in terms of the projective fan and proving
that it is a Lefschetz module. In what follows, we discuss applications of the main theorems of
this paper to this setting.

Let Σ be a projective fan in a real vector space V of dimension d. A piecewise polynomial
function on Σ is a real-valued function on V whose restriction to any cone of Σ is equal to
the restriction of a polynomial function on V . Let ApΣq be the ring of piecewise polynomial
functions on Σ modulo the ideal generated by globally linear functions. In [BBFK02, BL03], a
graded ApΣq-module IHpΣq, called the intersection cohomology of Σ, is constructed. When
Σ is rational, IHpΣq is identified with the intersection cohomology of the corresponding toric
variety.

The module IHpΣq is constructed using the theory of sheaves on the poset of cones of the fan.
For each cone σ of Σ, the authors of [BBFK02, BL03] construct a sheaf Lσ on the poset of cones
of Σ whose global sections form a module over the ring of piecewise polynomial functions on
Σ. Let o be the cone t0u of Σ. We obtain IHpΣq by tensoring the global sections of Lo with ApΣq.
When the fan is rational and complete, we obtain the intersection cohomology of the torus-orbit
closure corresponding to σ by tensoring the global sections of Lσ with ApΣq, with the grading
so that it is supported in degrees t0, . . . , d ´ dimσu. The construction of Lσ is valid for any fan,
even one that is not necessarily projective or complete. Let π : rΣ Ñ Σ be a proper map of fans.
Then there is an analogue of the decomposition theorem: let õ denote the cone t0u of rΣ. Then
Riπ˚Lõ “ 0 for i ą 0 [BL03, Theorem 5.6], and

(2.1) π˚Lõ
„

ÝÑ ‘σPΣLσ bWσ,

where Wσ “ ‘W i
σ is a graded vector space [BL03, Theorem 2.2 and 2.6]. The sheaf Lo appears

as a summand, which implies that, if Σ is projective, IHpΣq is an ApΣq-module summand of
IHprΣq.

Let K be the cone of strictly convex piecewise linear functions on Σ. In [Kar04], Karu proved
that if Σ is projective, then IHpΣq, which is equipped with an ApΣq-invariant bilinear form (see
[BL03, Section 6]), is a Lefschetz module of degree d over pApΣq,Kq. When Σ is simplicial, this
was previously proved by McMullen [McM93].

Since IHpΣq can be decomposable as a graded ApΣq-module, we cannot use the main the-
orems to recover Karu’s result. Indeed, let rΣ be a projective simplicial fan which refines Σ,
which exists by [CLS11, Theorem 6.1.8 and 11.1.9]. Then AprΣq is a Lefschetz module [McM93]
and IHpΣq is a graded ApΣq-module summand of AprΣq. But Theorem 1.3 cannot be applied to
IHpΣq because it may not be indecomposable over the subring of ApΣq which is generated in
degree 1.

In order to apply the results of this paper, we need to know that a filtration on IHprΣq which
is defined using sheaves on fans agrees with the perverse filtration, which is defined using a
strictly convex piecewise linear function on Σ. This first filtration, which was introduced and
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studied in [Kar19, Section 4], is defined using the decomposition in (2.1). We let τďp ‘σPΣ Lσ b

Wσ denote the sum of summands of the form Lσ b W i
σ where i ď dimσ ´ d ` p. Because rΣ is

simplicial, the global sections of π˚Lõ is the ring of piecewise polynomial functions on rΣ, and
so it is equipped with a surjective map to AprΣq. We can then define an increasing filtration on
AprΣq by the images of the global sections of τďp ‘σPΣ Lσ bWσ .

If one knows that this first filtration agrees with the perverse filtration associated to a strictly
convex piecewise linear function on Σ (and, in particular, is independent of the choice of decom-
position (2.1)), then it follows that IHpΣq is an ApΣq-module summand of Gr‚,d. Furthermore,
if η is a strictly convex piecewise linear function on rΣ, then it follows that IHpΣq is contained in
ker η due to the semisimplicity of the appropriate category of sheaves on Σ, see [Kar19, Theorem
2.4]. Corollary 1.8 then implies that IHpΣq is a Lefschetz module.

That these two filtrations coincide is essentially equivalent to (HL) for IHpΣq and the inter-
section cohomology of star fans of Σ, so it is not easy to establish directly. However, the results
of this paper can be used to simplify Karu’s proof of this statement in [Kar04]. Karu’s argument
proceeds by induction on dimension, first proving (HL) for IHpΣq using (HR) for fans of di-
mension at most d´ 1, and then proving (HR) for IHpΣq. After one proves (HL) for IHpΣq, the
main theorems of this paper imply that IHpΣq is a Lefschetz module, obviating the need for the
second step.

In [Kar19], Karu proved an analogue of the relative Hard Lefschetz theorem for sheaves on
fans. We show that it is possible to deduce this result from the main theorems of this paper. We
need to use that the intersection cohomology of a projective fan is a Lefschetz module [Kar04].
However, if Σ is simplicial, then IHpΣq “ ApΣq and ApΣq is generated in degree 1. In this case,
which is the one relevant for one of the main combinatorial applications of the relative Hard Lef-
schetz property in this setting, the unimodality of local h-polynomials of regular subdivisions
[Sta92, KS16], the argument below does not require Karu’s results. The argument in [LS25, Proof
of Theorem 1.9] can also be adapted to deduce the unimodality of local h-polynomial of regular
subdivisions from the main theorems without needing the theory of sheaves on fans.

Given a proper map π : rΣ Ñ Σ of fans, we say that a piecewise linear function on the ambient
vector space of rΣ is relatively strictly convex if it is strictly convex on the inverse image of each
cone of Σ. We say that π is projective if there is a relatively strictly convex function.

Theorem 2.7. Let Σ be a fan, let π : rΣ Ñ Σ be a projective map of fans, with rΣ in a vector space
of dimension d and Σ in a vector space of dimension e. Choose a decomposition of π˚Lõ as in
(2.1). Let η be a relatively strictly convex piecewise linear function on rΣ. Then for any σ P Σ and
each nonnegative j ď pd´e´dimσq{2, multiplication by ηd´e´dimσ´2j induces an isomorphism
from W j

σ to W d´e´dimσ´j
σ .

It follows from the semisimplicity of the appropriate category of sheaves [Kar19, Theorem
2.4], which is a consequence of (HL), that multiplication by η maps W j

σ into W j`1
σ , so multipli-

cation by ηd´e´dimσ´2j does indeed induce a map from W j
σ to W d´e´dimσ´j

σ .
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Proof. We first consider the case when Σ is projective. Then rΣ is projective as well, and the
discussion above identifies the map ηd´e´dimσ´2j : W j

σ Ñ W d´e´dimσ´j
σ with a map induced

by the map ηd´e´dimσ´2j˚ : Gr‚,e´dimσ`2j
Ñ Gr‚`d´e´dimσ´2j,2d´e`dimσ´2j . That this is an

isomorphism then follows from Theorem 1.5.

We now reduce the general case to the case where Σ is projective. Because π˚ is a pushfor-
ward map of sheaves between topological spaces, we can replace Σ by the fan consisting of σ
and all of its faces and replace rΣ by the inverse image of σ. Choose a projective fan Σ1 contain-
ing Σ, which is possible by choosing a completion (using [EI06]) and then refining it to make
it projective. There is a projective fan rΣ1 containing rΣ which maps to Σ1. For example, if y is a
strictly convex piecewise linear function on the support of Σ1, we can take the cones of rΣ1 to be
the loci where π´1pyq ` η is linear. We have then reduced to the case already proved. □

2.4. Applications to projective varieties. Finally, we give some applications of the main theo-
rems to projective varieties. These applications come in two flavors. Assuming Grothendieck’s
standard conjectures on algebraic cycles [Gro69], the ring of cycles modulo numerical equiva-
lence on a smooth projective variety is a Lefschetz module, see Proposition 2.8. That this holds
is known unconditionally in some cases, for example for smooth projective varieties over C for
which the Hodge conjecture is known, and for several classes of varieties over fields of arbi-
trary characteristic [Ito05]. If this is known for a smooth projective varietyX , then we can apply
the main theorems to any map from X to a projective variety Y , taking B to be the subring
generated by the pullbacks of ample divisor classes on Y . In some cases, this can be used to
deduce some of the standard conjectures for Y . This is closely related to the work of Corti and
Hanamura [CH00, CH07], who, assuming several conjectures, develop a version of the decom-
position theorem for Chow groups.

We also explain how the results of this paper can be used to give easier proofs of several cele-
brated results about the intersection cohomology of algebraic varieties and the Hodge-theoretic
nature of the decomposition theorem. The main theorems give a purely algebraic version of the
decomposition theorem, but the results of [BBD82] can be used to show that, in the setting of a
map X Ñ Y of complex projective varieties, this is related to the usual decomposition theorem
for perverse sheaves, see Proposition 2.13. Using only the main theorems and results which
were available when [BBD82] was written, we can show that the geometrically-defined per-
verse filtration on the cohomology of X is by Hodge substructures and that the relative Hodge–
Riemann relations hold, i.e., the primitive pieces have polarized Hodge structures. With a little
more geometric input, we can show that the intersection cohomology of a projective variety
carries a polarized pure Hodge structure. This result, which attracted considerable attention in
the 70s and 80s primarily using L2 methods [Zuc79, Zuc83, Che80, HP85, CKS87, KK87], was
finally proved using M. Saito’s theory of mixed Hodge modules [Sai88, Sai90].

2.4.1. Algebraic cycles. We begin by stating the forms of the standard conjectures on algebraic
cycles that we will use, see [Gro69]. For a connected smooth projective variety X of dimension
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d over an algebraically closed field of arbitrary characteristic, let AnumpXq denote the Chow
ring of cycles modulo numerical equivalence with real coefficients, which is equipped with
an isomorphism deg : Ad

numpXq Ñ R. Then we have the following versions of the standard
conjecture A and the standard conjecture of Hodge type.

Conjecture ApXq. Let η P A1
numpXq be the class of an ample divisor. Then, for any k ď d{2,

multiplication by ηd´2k induces an isomorphism from Ak
numpXq to Ad´k

numpXq.

Conjecture HdgpXq. Let η P A1
numpXq be the class of an ample divisor. Then the bilinear form

on Ak
numpXq given by px1, x2q ÞÑ p´1qk degpηd´2kx1x2q is positive definite on the kernel of mul-

tiplication by ηd´2k`1.

For a connected smooth projective varietyX , let KX be the cone inA1
numpXq given by positive

real linear combinations of classes of ample divisors, and let QX be the symmetric bilinear form
on AnumpXq given by px1, x2q ÞÑ degpx1x2q.

Proposition 2.8. Assume that ApXq and HdgpXq hold for all connected smooth projective vari-
eties. Let X be a connected smooth projective variety of dimension d. Then pAnumpXq,QXq is a
Lefschetz module of degree d over pAnumpXq,KXq.

Proof. We induct on the dimension ofX . Let η be an element of KX , and suppose g P Ak
numpXq is

a nonzero element of the kernel of multiplication by ηd´2k for some k ď d{2. Write η “
ř

airDis,
where the rDis are the classes of smooth connected ample divisors and the ai are positive real
numbers. Then we have

0 “ QXpg, ηd´2kgq “
ÿ

aiQXpg, rDisη
d´2k´1gq.

Let ι˚i denote the restriction map AnumpXq Ñ AnumpDiq. By the projection formula,

QXpg, rDisη
d´2k´1gq “ QDi

pι˚i pgq, ι˚i pηd´2k´1gqq.

We claim that ι˚i pgq is nonzero. Indeed, A(X) implies that rDis
d´2kg is nonzero, so there is some

class hi P Ak
numpXq with

QXphi, rDis
d´2kgq “ QDi

pι˚i phiq, ι
˚
i prDis

d´2k´1qι˚i pgqq

nonzero, implying the claim. As ι˚i pηd´2kgq “ 0 and AnumpDiq is a Lefschetz module by induc-
tion, (HR) implies that p´1qkQXpg, rDisη

d´2k´1gq ą 0. Applying this for all i contradicts the fact
that QXpg, ηd´2kgq “ 0.

We have verified (HL) for any η P KX . This implies that, for any η P KX and k ď d{2,
the form on Ak

numpXq given by px1, x2q ÞÑ QXpx1, η
d´2kx2q is nondegenerate. In particular, the

signature of this form does not change as we vary η within KX . As (HR) for η is equivalent to
the signature of this form being

řk
i“0p´1qipdimAi

numpXq ´ dimAi´1
numpXqq, that this holds when

η is the class of an ample divisor implies the result. □
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That AnumpXq is a Lefschetz module is sufficient for many applications of the standard con-
jectures. For example, if X is a smooth projective variety over the algebraic closure of a finite
field, then AnumpX ˆ Xq being a Lefschetz module implies the Riemann hypothesis for X , see
[Kle94].

Before applying our results to Chow rings modulo numerical equivalence, we will need a
few results on Lefschetz modules which are rings. Let A be a graded R-algebra equipped with
an isomorphism deg : Ad Ñ R and a nonempty open convex cone KA in A1. Let QA be the
symmetric bilinear form defined by px1, x2q ÞÑ degpx1x2q. Suppose that pA,QAq is a Lefschetz
module of degree d over pA,KAq.

Lemma 2.9. Let y1, . . . , ye be elements of KA, and suppose that the product y1 ¨ ¨ ¨ ye is nonzero.
Let η P KA. Then degpηd´ey1 ¨ ¨ ¨ yeq ą 0.

Proof. By iteratively applying Lemma 4.6, A{ annpy1 ¨ ¨ ¨ yeq, equipped with the bilinear form Q

described in Section 4.3, is a Lefschetz module of degree d´e over pA,KAq. Because y1 ¨ ¨ ¨ ye ­“ 0,
1 is a nonzero element of A{ annpy1 ¨ ¨ ¨ yeq. Then (HR), for k “ 0, implies that Qp1, ηd´eq “

degpηd´ey1 ¨ ¨ ¨ yeq is positive. □

We will consider a graded subring B of A for which Be is 1-dimensional, and Bs “ 0 for
s ą e. Choose an isomorphism degB : Be Ñ R, and let QB be the symmetric bilinear form given
by QBpx1, x2q “ degBpx1x2q. We will assume that QB is nondegenerate; whether this happens
is independent of the choice of isomorphism degB .

Proposition 2.10. Suppose that B is generated as a ring by elements of KA. Set KB to be the
interior of B1 XKA. Then there is a unique ϵ P t˘1u such that pB, ϵQBq is a Lefschetz module of
degree e over pB,KBq.

Proof. Because KB is open in B1, B is generated by elements y1, . . . , ys of KB . Let η be a class in
KA, and set ℓ “ y1 ` ¨ ¨ ¨ ` ys. Then

degpηd´eℓeq “
ÿ

pi1,...,ieq

degpηd´eyi1 ¨ ¨ ¨ yieq.

Each term in this sum either vanishes (if yi1 ¨ ¨ ¨ yie “ 0) or is positive by Lemma 2.9. Because
B is generated by y1, . . . , ys, at least one term is positive. So we deduce that ℓe ­“ 0, and so
ℓe R annpηd´eq. Therefore Be X annpηd´eq “ 0.

The image of B under the quotient map A Ñ A{ annpηd´eq is isomorphic to B. Indeed, the
nondegeneracy of QB implies that every nonzero ideal inB intersectsBe. AsBeXannpηd´eq “ 0,
this implies the claim thatBXannpηd´eq “ 0. By Lemma 4.6,A{ annpηd´eq is a Lefschetz module
over pA,KAq. We may replace A by A{ annpηd´eq, and all the hypotheses are still satisfied. We
may therefore assume that d “ e.
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Up to a nonzero constant, the restriction of QA to B is QB , and so the restriction of QA to B
is nondegenerate. This implies that B is a B-module summand of A, and it is clearly indecom-
posable as a B-module. The main results of this paper then show that pB,QA|Bq is a Lefschetz
module over pB,KBq. We set ϵ to be the sign of the constant relating QA|B to QB . □

Theorem 2.11. Let X Ñ Y be a map of connected smooth projective varieties, and assume
that pAnumpXq,QXq is a Lefschetz module of degree dimX over pAnumpXq,KXq. Suppose that
AnumpY q is generated as a ring in degree 1. Then pAnumpY q,QY q is a Lefschetz module of degree
dimY over pAnumpY q,KY q.

Proof. Because the ample cone of Y is open, A1
numpY q is generated by KY . Then the hypotheses

of Proposition 2.10 hold, so it remains to check that the constant ϵ appearing there is 1. But this
follows from the fact that if ℓ is an ample class on Y , then QY p1, ℓdimY q ą 0. □

2.4.2. Lefschetz modules with Hodge structures. We now discuss the behavior of the decomposition
package with respect to Hodge structures.

Let A and M be as in Section 1, and set MC “ M bR C. We say that M is a graded A-module
with a Hodge structure if the following holds:

(HS1) Each graded piece Mk
C is equipped with a pure Hodge structure of weight k, and the

elements of Al act as morphisms of Hodge structures of bidegree pl, lq, that is,

Mk
C “

à

p`q“k

Mp,q, Mp,q “ Mq,p, and AlMp,q Ď M l`p,l`q.

Now let A, M , KA and Q be as in Section 1, and set MC “ M bR C. We say that pM,Qq is a
Lefschetz module endowed with a pure Hodge structure of degree d, or simply a Lefschetz module with
Hodge structure, if M is a graded A-module with a Hodge structure in the sense of (HS1) and,
moreover, the following holds:

(HS2) For each integer n, let Mn “
À

kě0M
k`n,k, and endow Mn with the Hermitian form

Qn : Mn ˆMn ÝÑ C, Qnpα, βq “ inQpα, β̄q.

Then pMn,Qnq is a complex Lefschetz module of degree d´ n over pA,KAq.

The degrees in a Lefschetz module with Hodge structure are doubled compared to ordinary
Lefschetz modules, e.g., we have dimM i “ dimM2d´i in a Lefschetz module with Hodge struc-
ture of degree d. Note that the category of finite dimensional graded A-modules with Hodge
structures is an abelian category in which every object has finite length, so the Krull–Schmidt
theorem applies to it.

LetN be a gradedA-module with a Hodge structure, and consider the Hodge decomposition
Nk

C “
À

p`q N
p,q of its graded pieces. For each integer n, set Nn “

À

kě0N
k`n,k. Note that

Nn “ N´n. Moreover, N0 and Nn ‘ Nn for n ą 0 are defined over R, i.e., there are graded
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A-modules L0, L1, . . . such that L0,C » N0 and Ln,C » Nn ‘ Nn for n ą 0. Then each Ln is a
graded A-module with a Hodge structure, and we have N “ ‘ně0Ln.

An object N is indecomposable in the category of finite dimensional graded A-modules with
Hodge structures if and only if there is a unique n ě 0 such that Nn is nonzero, and Nn is an
indecomposable graded AC-module. If n “ 0, this is equivalent to L0 being an indecomposable
graded A-module. If N is an indecomposable Lefschetz module with Hodge structure with
n “ 0, then we say that N is of Hodge–Tate type.

Let B and KB as in Section 1. Choose a decomposition as in (1.1), where each Nα is indecom-
posable as a graded B-module with a Hodge structure. Let Nk

α,C “
À

p`q“kN
p,q
α be the Hodge

decomposition of the graded piece Nk
α,C. For each α, one of the following happens: Either Nα is

of Hodge–Tate type, in which case,Nα is an indecomposableB-module. Or,Nα,C “ Nα,n‘Nα,n

for a positive integer n ą 0 with Nα,n “
À

kě0N
k`n,k
α , and Nα,n is an indecomposable BC-

module. Applying Theorems 1.1, 1.2, 1.3, and 1.4 and their complex analogues in Remark 2.1,
we infer the existence of Qα and ϵα P t˘1u such that pNα,n, ϵαQnq is a Lefschetz module over
pB,KBq with Hodge structure.

We can define the perverse filtration on M , using the decomposition into indecomposable
graded B-modules with Hodge structures, except taking into account the degree doubling. I.e.,
a summand Nαr´ks, where Nα is a Lefschetz module with Hodge structure of degree dpαq and
so is supported in degrees 0, 2, . . . , 2dpαq, first appears in Pdpαq`k.

Theorem 2.12. Consider a decomposition of M into indecomposable B-modules with Hodge
structure as in (1.1). Then for each α, pNα, ϵαQαq is a Lefschetz module with Hodge struc-
ture over pB,KBq. Moreover, the perverse filtration is by Hodge substructures, and the graded
pieces of the perverse filtration inherit pure Hodge structures. For each η P KA{B and ℓ P KB ,
the primitive pieces of Gr carry polarized Hodge structures.

Proof. We already discussed the proof of the first statement. The second assertion follows from
this, in view of (1.3) and the definition of Gr. The last assertion follows from the version of
Theorem 1.7 for complex Lefschetz modules. □

2.4.3. The Hodge theory of the decomposition theorem. Let X be a complex projective (integral) va-
riety of dimension d. For a local system L on a Zariski open subset U of X , let ICpU,Lq denote
the intersection cohomology perverse sheaf in Db

cpXq, the bounded derived category of con-
structible sheaves on X . If L is a simple local system, then ICpU,Lq is a simple object in the
category of perverse sheaves on X [BBD82, Theorem 4.3.1]. Let IHpX,Lq “ HpICpU,Lqr´dsq

be the hypercohomology of ICpU,Lq, shifted so that its support is contained in t0, . . . , 2du.

Let HpXq denote the subring of H‚pX;Rq generated by the Chern classes of line bundles on
X . Then IHpX,Lq is a graded module over HpXq. Let KpXq denote the open convex cone in
H2pXq generated by the first Chern classes of ample line bundles.
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Now let f : X Ñ Y be a map from X to a projective variety Y , and assume that X is smooth.
The decomposition theorem of Beilinson, Bernstein, Deligne, and Gabber [BBD82, Theorem
6.2.5] states that there is an isomorphism in Db

cpY q

f˚RX »
à

i

ICpZi,Liqr´d´ eis,

where RX is the constant sheaf on X , the Zi are smooth connected locally closed subvarieties
of Y of dimension di, each Li is a simple local system on Zi, and the ei are integers. Taking
hypercohomology, for each k we obtain a direct sum decomposition

(2.2) HkpX;Rq »
à

i

IHk´d´ei`dipZi,Liq.

Both HkpX;Rq and each IHpZi,Liq are graded HpY q-modules, and the above isomorphism is
an isomorphism of graded HpY q-modules.

Because X is smooth, the main theorems of Hodge theory give H‚pX;Rq the structure of
a Lefschetz module with Hodge structure over HpXq, see, e.g., [Huy05, Chapter 3]. We will
consider the decomposition of H‚pX;Rq as a module over the image of HpY q in HpXq.

The perverse truncation functors on Db
cpY q induce a filtration P 1

‚ on HkpX;Rq, which we call
the geometric perverse filtration. In terms of the chosen decomposition (2.2), this filtration is
given by

P 1
j “

à

eiďj

IHpZi,Liq.

We also have a perverse filtration P‚ on the Lefschetz module H‚pX;Rq, obtained by decom-
posing H‚pX;Rq in the category of graded HpY q-modules with Hodge structures.

Proposition 2.13. The geometric perverse filtration is equal to the perverse filtration onH‚pX;Rq.

Proof. Let ℓ P H2pY q be an ample class. By [BBD82, Theorem 6.2.10], as ℓ restricts to an ample
class on the closure of eachZi, multiplication by ℓdi´k induces an isomorphism from IHkpZi,Liq

to IH2di´kpZi,Liq for each k ě 0 and each i. In particular, refining the decomposition (2.2)
into a decomposition of graded Rrℓs-modules, we see that the summand corresponding to
ICpZi,Liqr´d´ eis is contained in Pei , and it intersects Pei´1 trivially. □

In particular, this implies that the geometric perverse filtration on H‚pX;Rq is “Hodge-
theoretic.” More precisely, the main theorems for Lefschetz modules with Hodge structures,
especially the relative Hodge–Riemann relations, give the following.

Corollary 2.14. The associated graded pieces of the geometric perverse filtration are endowed
with pure Hodge structures, and for any ample classes η P HpXq and ℓ P HpY q, the primitive
pieces Primi,j

– kerpηd´j`1 : Gri,j Ñ Gri`2d´2j`2,2d´j`2
q X kerpℓj´i`1 : Gri,j Ñ Gr2j´i`2,j

q

carry polarized Hodge structures.
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Corollary 2.14 was first proved by Saito [Sai88, Sai90] using his theory of mixed Hodge mod-
ules, and a simpler proof was given by de Cataldo and Migliorini [dCM05]. The argument
above deduces Corollary 2.14 as a formal consequence of the results of [BBD82].

We now explain how the main theorems can be used to put a polarized pure Hodge structure
on the intersection cohomology of a complex projective variety. This was first accomplished by
Saito [Sai88, Sai90]. Another proof was given by de Cataldo and Migliorini [dCM05], and our
approach is similar to theirs.

Let Y be a complex projective variety of dimension d, and let IHpY q denote the intersection
cohomology of Y with respect to the trivial local system. Let HpY q be the subring of H‚pY ;Rq

generated by the first Chern classes of line bundles, and let KY denote the open cone in H2pY q

generated by the first Chern classes of ample line bundles. Note that Verdier duality induces a
nondegenerate HpY q-invariant symmetric bilinear form Q on IHpY q.

Proposition 2.15. There is a pure Hodge structure on IHpY q so that it is a Lefschetz module
with Hodge structure over pHpY q,KY q.

Proof. Let f : X Ñ Y be a projective resolution of singularities. By the decomposition theorem
[BBD82, Theorem 6.2.5], ICpY q is a summand of f˚RX rds. Decompose the Lefschetz module
with Hodge structure H‚pX;Rq over HpY q. By Proposition 2.13, IHpY q Ď Pd and IHpY q X

Pd´1 “ 0, so IHpY q can be identified with a subspace of Gr‚,d.

Let pHkpf˚Rrdsq denote the kth perverse cohomology of f˚Rrds, so ICpY q is a summand of
pH0pf˚Rrdsq. Because pH0pf˚Rrdsq is a semisimple perverse sheaf, it has a canonical decom-
position into “isotypic components.” Because f is birational, there is a unique summand of
pH0pf˚Rrdsq which is isomorphic to ICpY q. As the hypercohomology of pH0pf˚Rrdsq is identi-
fied with Gr‚,d, this identification of IHpY q with a subspace of Gr‚,d is canonical.

Let η be an ample class on X . Multiplication by η induces a map from pH0pf˚Rrdsq to
pH2pf˚Rrdsq. Because f is birational, pH2pf˚Rrdsq does not contain any summand isomorphic
to ICpY q. Because ICpY q is a simple perverse sheaf, it is therefore killed by multiplication by η.
This implies that IHpY q is contained in ker η Ă Gr‚,d.

By Corollary 2.14, this identifies IHpY q with a summand of a Lefschetz module with Hodge
structure over HpY q. By a variant of Lemma 6.3 for Lefschetz modules with Hodge structures,
it suffices to prove that IHpY q is a Hodge substructure of Gr‚,d. If H‚pX;Rq is of Hodge–Tate
type, then this is automatic. In general, this is accomplished by a geometric argument of de
Cataldo and Migliorini [dCM05, Proof of Theorem 2.2.1], which we now sketch.

One proves the following more general statement: let g : W Ñ Z be a map between pro-
jective varieties, with W smooth of dimension d. For each k, there is a canonical isomorphism
pHkpg˚RW rdsq »

À

i ICpZi,Liq, where each Li is a semisimple local system and Zi ­“ Zj for
i ­“ j. This canonically identifies IHpZi,Liq with a subspace of Gr‚,d`k, which is the hyper-
cohomology of pHkpg˚RW rdsq. We claim that, for each k and each i, IHpZi,Liq is a Hodge
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substructure of Gr‚,d`k. As ICpY q is the unique summand which is supported on all of Y , this
implies the result.

We induct on dimW . By slicing by an ample divisor on either W or Z and using a version of
Proposition 4.10 or Proposition 4.12 for Lefschetz modules with Hodge structures, we reduce to
proving this general statement for Grd,d.

LetZ1 be the dense stratum inZ. Because the ICpZi,Liq are semisimple perverse sheaves, the
subspaces IHdimZipZi,Liq of Grd,d are orthogonal to each other with respect to the bilinear form
Q. As Q is compatible with the Hodge structures, the orthogonal complement of a Hodge sub-
structure is a Hodge substructure, so it suffices to show that, for each j ­“ 1, ‘i ­“jIH

dimZipZi,Liq

is a Hodge substructure of Grd,d.

Choose some j ­“ 1, and let V be a resolution of singularities of g´1pZjq. The map from V

to Z induces a perverse filtration on H‚pV ;Rq, and there is a pullback map Grd,dH‚pW ;Rq Ñ

Grd,dH‚pV ;Rq. This is a map of Hodge structures, and IHdimZipZi,Liq is in the kernel for each
i ­“ j. The key computation is that the restriction of this map to IHdimZj pZj ,Ljq is injective.
This holds because ICpZj ,Ljq is a summand of the pushforward of the appropriately shifted
constant sheaf on V to Z. □

3. EXAMPLES

By Theorem 1.1, the endomorphism ring of an indecomposable Lefschetz module is a finite
dimensional division algebra over R. We begin with two examples illustrating that both the
field of complex numbers C and the quaternions H can occur.

Example 3.1. Let M0 be the 4-dimensional real vector space with basis e1, e2, e3, e4, and let M1

be the 4-dimensional real vector space with basis e˚
1 , e

˚
2 , e

˚
3 , e

˚
4 . Set M – M0 ‘M1, and let Q be

the symmetric bilinear form defined by

Qpei, e
˚
j q “

$

&

%

1, if i “ j,

0, if otherwise.

A linear map M0 Ñ M1 is given by a 4ˆ4 matrix, and Q is invariant under this map if and only
if this matrix is symmetric. Set A0 – R and

A1 –

#˜

X dY

dY t X

¸ ˇ

ˇ

ˇ

ˇ

ˇ

X “

˜

a c

c b

¸

, Y “

˜

0 1

´1 0

¸

, a, b, c, d P R

+

.

The direct sum A – A0 ‘ A1 has the structure of a graded algebra over R. Note that M is
an A-module and that Q is an A-invariant symmetric bilinear form on M . Setting KA to be
the intersection of A1 with the cone of positive definite matrices gives pM,Qq the structure of a
Lefschetz module of degree 1 over pA,KAq.

The ring of graded A-module endomorphisms of M is identified with the space of matrices
that commute with all matrices in A1. It is easy to check that this space of matrices is spanned
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by the identity and the matrix

J –

˜

02 I2

´I2 02

¸

, where 02 “

˜

0 0

0 0

¸

and I2 “

˜

1 0

0 1

¸

.

As the algebra spanned by the identity and J is isomorphic to the complex numbers C, we see
that M is indecomposable and has endomorphism ring isomorphic to C. ˛

Example 3.2. Let M0 be the 8-dimensional real vector space with basis e1, e2, . . . , e8, and let M1

be the 8-dimensional real vector space with basis e˚
1 , e

˚
2 , . . . , e

˚
8 . Set M – M0 ‘M1, and let Q be

the symmetric bilinear form defined by

Qpei, e
˚
j q “

$

&

%

1, if i “ j,

0, if otherwise.

A linear map M0 Ñ M1 is given by an 8 ˆ 8 matrix, and Q is invariant under this map if and
only if this matrix is symmetric. Set A0 – R and

A1 –

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

X eY dY fY

eY t X fY dY t

dY t fY t X eY

fY t dY eY t X

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X “

˜

a c

c b

¸

, Y “

˜

0 1

´1 0

¸

, a, b, c, d, e, f P R

,

/

/

/

.

/

/

/

-

.

The direct sum A – A0 ‘ A1 has the structure of a graded algebra over R. Let KA be the
intersection of A1 with the cone of positive definite matrices. Note that pM,Qq is a Lefschetz
module of degree 1 over pA,KAq. A lengthy computation shows that the space of matrices that
commute with A1 is spanned by the identity, J , K, and JK, where

J –

¨

˚

˚

˚

˝

02 02 I2 02

02 02 02 I2

´I2 02 02 02

02 ´I2 02 02

˛

‹

‹

‹

‚

, and K –

¨

˚

˚

˚

˝

02 02 02 I2

02 02 ´I2 02

02 I2 02 02

´I2 02 02 02

˛

‹

‹

‹

‚

.

As the algebra spanned by the identity, J , K, and JK is isomorphic to the quaternions H, we
see that M is indecomposable and has endomorphism ring isomorphic to H. ˛

Because an indecomposable Lefschetz module M is a graded vector space over its endomor-
phism ring, the endomorphism ring of M is 1-dimensional if M0 is a 1-dimensional real vector
space.

The next example shows that the conclusion of Theorem 1.2 may fail if one works with coef-
ficients in Q instead of R.

Example 3.3. Let M0 be the 2-dimensional rational vector space with basis e1, e2, and let M1 be
the 2-dimensional rational vector space with basis e˚

1 , e
˚
2 . Set M – M0 ‘ M1, and let Q be the
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symmetric bilinear form defined by

Qpei, e
˚
j q “

$

&

%

1, if i “ j,

0, if otherwise.

A linear map M0 Ñ M1 is given by a 2ˆ2 matrix, and Q is invariant under this map if and only
if this matrix is symmetric. Set A0 – Q and

A1 –

#˜

a b

b a` 2b

¸
ˇ

ˇ

ˇ

ˇ

ˇ

a, b P Q

+

.

The direct sum A – A0 ‘A1 has the structure of a graded algebra over Q. Note that M is an A-
module and that Q is an A-invariant symmetric bilinear form on M . Let KA be the intersection
of A1 bQ R with the cone of positive definite matrices. Then pM bQ R,Qq has the structure of a
Lefschetz module of degree 1 over pAbQ R,KAq.

The ring of graded A-module endomorphisms of M is identified with the space of matrices
that commute with all matrices in A1. It is easy to check that this space of matrices is spanned
by the identity and the matrix

D –

˜

´1 1

1 1

¸

.

The ring of graded endomorphisms of M is isomorphic to Qr
?
2s, and hence M is an indecom-

posable graded A-module, but there is an extra A-invariant symmetric bilinear form given by
px, yq ÞÑ QpDx, yq. Note that M bQ R is decomposable over A bQ R, and each of its indecom-
posable summands has an essentially unique nonzero A-invariant symmetric bilinear form. ˛

We give examples of the decomposition package.

Example 3.4. The Fano matroid F7 is the matroid on seven elements whose bases are the three-
element subsets that are not collinear in the following picture of the Fano plane:

3 5

1

62

4

7

Let A be the graded Möbius algebra of F7, and let KA be the set of positive linear combinations
of the generators y1, . . . , y7. One can check that the symmetric bilinear pairing onA given by the
multiplication gives A the structure of a Lefschetz module over pA,KAq. This is a special case of
the statement that the intersection cohomology module of a matroid is a Lefschetz module over
the graded Möbius algebra [BHM`b].
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Let B be the subalgebra of A generated by the elements y1, y3, y5, y7. There are infinitely
many different decompositions of M – A into indecomposable graded B-modules, each of
which has three summands. One of the three summands is common to all the decompositions,
the one-dimensional summand spanned by

η – y1 ´ y2 ` y3 ´ y4 ` y5 ´ y6 ` y7.

For example, M “ S1 ‘ S2 ‘ S3, where S1, S2, S3 are graded B-submodules of M given by

S3
1 “ spanpy12334567q, S3

2 “ 0, S3
3 “ 0,

S2
1 “ spanpy123, y147, y156, y257, y345, y367q, S2

2 “ 0, S2
3 “ spanpy2ηq,

S1
1 “ spanpy1, y3, y5, y7, y2, y4 ´ y6q, S1

2 “ spanpηq, S1
3 “ 0,

S0
1 “ spanpy∅q, S0

2 “ 0, S0
3 “ 0.

We also have M “ T1 ‘ T2 ‘ T3, where T1, T2, T3 are graded B-submodules of M given by

T 3
1 “ spanpy12334567q, T 3

2 “ 0, T 3
3 “ 0,

T 2
1 “ spanpy123, y147, y156, y257, y345, y367q, T 2

2 “ 0, T 2
3 “ spanpy4ηq,

T 1
1 “ spanpy1, y3, y5, y7, y4, y2 ´ y6q, T 1

2 “ spanpηq, T 1
3 “ 0,

T 0
1 “ spanpy∅q, T 0

2 “ 0, T 0
3 “ 0.

Note that S1 » T1 and S3 » T3 as graded B-modules, and S2 “ T2. One implication of Theo-
rems 1.2 and 1.4 is that, for any decomposition of M into indecomposable graded B-modules

M “ N1 ‘N2 ‘N3 with dimN2 “ dimN3 “ 1,

the restriction of the Poincaré pairing Q on M to N1 is nondegenerate, and pN1,Qq satisfies the
Hard Lefschetz property and the Hodge–Riemann relations with respect to pB,KBq. ˛

Example 3.5. Let A be the graded Möbius algebra of F7 as above, and let B be the subalgebra of
A generated by the elements y1, y3 ` y5, and y2 ` y4 ` y6 ` y7. In this case, M – A decomposes
uniquely5 into indecomposable graded B-modules N1 ‘N2, where

N3
1 “ spanpy12334567q, N3

2 “ 0,

N2
1 “ spanpy147, y246, y345, y123 ` y156, y257 ` y367q, N2

2 “ spanpy123 ´ y156, y257 ´ y367q,

N1
1 “ spanpy1, y4, y7, y3 ` y5, y2 ` y6q, N1

2 “ spanpy3 ´ y5, y2 ´ y6q,

N0
1 “ spanpy∅q, N0

2 “ 0.

That N2 is an indecomposable graded B-module follows from the property that

N2
2 “ spanpy1, y3 ` y5, y2 ` y4 ` y6 ` y7q ¨ ξ for any nonzero ξ P N1

2 .

5In general, a decomposition of M into indecomposable graded B-modules is unique up to isomorphism of its
summands, but not necessarily uniquely determined, as illustrated in Example 3.4. In the present case, however, the
uniqueness follows from the fact that every summand shares the same middle degree, or, equivalently, that there is an
element of KB satisfying the Hard Lefschetz theorem on M , and so the perverse filtration is trivial.



24 OMID AMINI, JUNE HUH, AND MATT LARSON

ThatN2 satisfies the Hodge–Riemann relations with respect to KB is equivalent to the statement
˜

a` 3c a´ c

a´ c a` 2b` c

¸

is positive definite for any a, b, c ą 0.

In the previous example, each indecomposable Lefschetz module appearing in the decomposi-
tion ofM had a lowest-degree nonzero homogeneous component of dimension 1. In the current
example, we see that indecomposable Lefschetz modules with lowest-degree components of di-
mension 2 may appear in the decomposition of M . ˛

While the main examples of Lefschetz modules come from algebraic geometry, there are Lef-
schetz modules which provably do not appear inside the cohomology of a compact Kähler man-
ifold or a smooth projective variety.

Example 3.6. Consider the cubic polynomial in three variables

fpw1, w2, w3q “ 14w3
1 ` 6w2

1w2 ` 24w2
1w3 ` 12w1w2w3 ` 6w1w

2
3 ` 3w2w

2
3,

and let A be the graded algebra over R cogenerated by f . In other words, A is the unique
quotient of Rrx1, x2, x3s equipped with a map deg : A3 Ñ R such that the bilinear maps A0 ˆ

A3 Ñ R and A1 ˆA2 Ñ R are nondegenerate and

degppw1x1 ` w2x2 ` w3x3q3q “ fpw1, w2, w3q.

Using that f is a Lorentzian polynomial in the sense of [BH20], one can check that A is a Lefschetz
module over pA,R3

ą0q. However, A is not a subquotient of the ring of real pp, pq forms on a
3-dimensional compact Kähler manifold nor of the Chow ring modulo numerical equivalence
of a 3-dimensional smooth projective variety over an algebraically closed field because f does
not satisfy the reverse Khovanskii–Tessier inequality of [LX17, JL23], see [Huh23, Example 14]. ˛

4. THE PERVERSE FILTRATION

In this section, we establish some fundamental properties of the perverse filtration 0 Ď P0 Ď

¨ ¨ ¨ Ď P2d “ M . As mentioned in the introduction, Theorem 1.3 implies that the perverse
filtration can be defined using any B-module decomposition of M . However, we will not be
able to prove this until after establishing the main theorems.

Choose some ℓ P KB . For e ě 0, let Ce “ Rrℓs{pℓe`1q be the cyclic graded Rrℓs-module which
is generated by 1 P C0

e . Fix a decomposition of M into indecomposable Rrℓs-modules:

(4.1) M »
à

e,k

Cer´ks‘mpe,kq.

Recall that Pj is spanned by the summands Cer´ks‘mpe,kq with e` 2k ď j. From the alternative
description of the perverse filtration in (1.2), we see that the perverse filtration is independent
of the choice of Rrℓs-module decomposition.
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4.1. Module structures. The following lemma endows Gr with a natural A-module structure,
with multiplication denoted by ˚ : Aˆ Gr Ñ Gr such that As ˚ Gri,j Ď Gri`s,j`2s.

Lemma 4.1. For each s and j, AsPj Ď Pj`2s.

Proof. By (1.2), Pj XMk is spanned by elements of the form ℓk´cm, where m P M c is an element
which satisfies ℓj`1´k´cm “ 0. Then for any a P As, the element

a ¨ ℓk´cm “ ℓs`k´ps`cqa ¨m

lies in ℓps`kq´ps`cqM X annM pℓj`2s`1´ps`kq´ps`cqq XMs`k, which is contained in Pj`2s XMs`k

by (1.2), as required. □

We now show that Gr‚,j is a B-module for each j. The following lemma is automatic from
the description of the perverse filtration in terms of the chosen Rrℓs-module decomposition.

Lemma 4.2. For each j, we have ℓPj Ď Pj .

We will need the following result, which was proved in the setting of variations of polarized
Hodge structures in [CK82, Theorem 3.3]. By [Cat08, Theorem 3.1], this implies the following
result for Lefschetz modules.

Proposition 4.3. The perverse filtration is independent of the choice of ℓ P KB .

Proof. By [CK82, Theorem 3.3] and [Cat08, Theorem 3.1], the weight filtration W´d Ď W´d`1 Ď

¨ ¨ ¨ Ď Wd´1 Ď Wd “ M associated to ℓ is independent of the choice of ℓ P KB . The statement
now follows by observing that Pj “

ř

i`2kďj Wi XMk. □

As KB is open, this implies that the action of B1 preserves the perverse filtration. Because
B is generated in degree 1, we deduce the following, which gives each Gr‚,j the structure of a
graded B-module.

Corollary 4.4. For any b P B and any j, bPj Ď Pj .

From the description of the perverse filtration in terms of the chosen Rrℓs-module decompo-
sition, we have an identification

Gr‚,j
»

à

e`2k“j

Cer´ks‘mpe,kq.

In particular, we have the following corollary.

Corollary 4.5. For any ℓ P KB , each 0 ď j ď 2d, and each i ď j{2, the map ℓj´2i : Gri,j Ñ Grj´i,j

is an isomorphism.
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4.2. The 1-dimensional summands. We give a concrete description of a submodule of Gr,
which we will make use of later. Let

N “
à

k

C0r´ks‘mp0,kq Ď M

be the direct sum of the 1-dimensional Rrℓs-module summands in the chosen Rrℓs-module de-
composition of M . The restriction of the perverse filtration to N coincides with the filtration
induced by the grading on M , and so N is identified with its image in Gr. Then N admits the
following simple description:

N “
annM pℓq

ℓM X annM pℓq
¨

In fact, N coincides with the kernel of the map Gr‚,2‚
Ñ Gr‚`1,2‚ induced by multiplication by

ℓ. It is therefore an A-submodule of Gr, and the above is an equality of A-modules.

4.3. The descent lemma. Given a P Ak, we consider the A-module Ma – M{ annM paq. Let
φ : M Ñ Ma be the quotient map. ThisA-module is equipped with anA-invariant bilinear form
Qa : Ma ˆMa Ñ R which is defined by the property

Qapφpxq, φpyqq “ Qpx, ayq @x, y P M.

In particular, Qa : M
i
a ˆ M j

a Ñ R vanishes unless i ` j “ d ´ k. By construction, Qa : M
i
a ˆ

Md´k´i
a Ñ R is nondegenerate. The next result from [CKS87, Lemma 1.16] and [Cat08, Theorem

3.2], which is known as the descent lemma, will be crucial in what follows. It will allow us to
prove statements by induction on the degree of the Lefschetz module.

Lemma 4.6. Let γ be an element in the closure of KA. Then Mγ “ M{ annM pγq equipped with
the bilinear form Qγ described above is a Lefschetz module of degree d´ 1 over pA,KAq.

We will frequently consider Mℓp “ M{ annpℓpq for a nonnegative integer p. By repeatedly
applying Lemma 4.6, we deduce that Mℓp , equipped with the bilinear form Qℓp , is a Lefschetz
module of degree d´ p over pA,KAq.

The chosen decomposition (4.1) of M into indecomposable Rrℓs-modules induces a decom-
position of Mℓp into indecomposable Rrℓs-modules: we have

(4.2) Mℓp »
à

e,k
eěp

Ce´pr´ks‘mpe,kq.

4.4. The bilinear form on Gr. We construct a nondegenerate symmetric bilinear form on Gr.

Lemma 4.7. For all i and j, we have

QpM i X Pj ,M
d´i X P2d´j´1q “ 0.



A DECOMPOSITION THEOREM FOR LEFSCHETZ MODULES 27

Proof. Note thatM iXPj is spanned by elements of the form ℓi´cm, wherem P M c with ℓe`1m “

0 for some e with e ` 2c ď j. Similarly, Md´i X P2d´j´1 is spanned by elements of the form
ℓd´i´c1

m1 with ℓe
1
`1m1 “ 0 for some e1 with e1 ` 2c1 ď 2d´ j ´ 1. Then

Qpℓi´cm, ℓd´i´c1

m1q “ Qpℓd´c´c1

m,m1q “ Qpm, ℓd´c´c1

m1q.

This vanishes if either e`1 ď d´c´c1 or e1 `1 ď d´c´c1. Adding the two equations e`2c ď j

and e1 ` 2c1 ď 2d´ j ´ 1 implies that one of these must hold. □

Lemma 4.7 implies that Q descends to a symmetric bilinear form

Q : Gri,j ˆGrd´i,2d´j
ÝÑ R.

We extend Q to a map GrˆGr Ñ R by setting QpGri,j ˆGri
1,j1

q “ 0 unless i ` i1 “ d and
j ` j1 “ 2d.

Recall from Section 4.2 thatN is the subspace ofM spanned by the 1-dimensional summands
in the chosen Rrℓs-module decomposition, and that it can be identified with annM pℓq{pℓM X

annM pℓqq, which is naturally a subspace of Gr. Since the perverse filtration on N coincides with
the filtration induced by the grading, the restriction of the forms Q and Q to N can be identified.

Lemma 4.8. The restriction of Q to N is nondegenerate.

Proof. We need to show that each element m P annM pℓq which has Qpm,nq “ 0 for all n P

annM pℓq lies in ℓM . Note that annM pℓq is the orthogonal complement of ℓM with respect to Q.
Then (PD) implies that ℓM is the orthogonal complement of annM pℓq. □

In particular, we deduce that dimN i “ dimNd´i. Recall that mpe, kq is the multiplicity of
Cer´ks in the Rrℓs-module decomposition of M .

Proposition 4.9. The form Q is nondegenerate.

Proof. We first show that dimGri,j “ dimGrd´i,2d´j for all i and j. It follows from Lemma 4.8
that mp0, kq “ mp0, d ´ kq. By (4.2), mpe, kq is equal to the multiplicity of C0r´ks in Mℓe . Using
Lemma 4.6 and applying Lemma 4.8 to Mℓe , we deduce that mpe, kq “ mpe, d ´ e ´ kq. This
implies that dimGri,j “ dimGrd´i,2d´j .

Choose a basis for Mk which is compatible with the perverse filtration on Mk. Lemma 4.7
and the above equality of dimensions implies that the matrix representing Q with respect to this
basis is triangular. As Q is nondegenerate, this implies that Q is nondegenerate. □

4.5. Applications of the descent lemma. For γ P KA, let Pγ,‚ be the perverse filtration on Mγ ,
defined using our chosen element ℓ P KB . Let Grγ be the associated graded of Mγ with respect
to the perverse filtration. Let ψ : M Ñ Mℓ be the quotient map associated to ℓ.

Proposition 4.10. The quotient map ψ : M Ñ Mℓ satisfies ψpPjq “ Pℓ,j´1 for all j. The induced
map Grψ : Gri,j Ñ Gri,j´1

ℓ is an isomorphism if i ă j{2.
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Proof. IfM »
À

e,k Cer´ks‘mpe,kq is the fixed Rrℓs-module decomposition ofM , thenψpCer´ksq “

Ce´1r´ks, where C´1 is interpreted as 0. By (4.2),

Mℓ »
à

e,k

Ce´1r´ks‘mpe,kq

is an Rrℓs-module decomposition of Mℓ. As Cer´ks lies in Pe`2k and Ce´1r´ks lies in Pℓ,e`2k´1,
this implies that ψpPjq “ Pℓ,j´1.

In terms of the chosen decomposition, we have

Gr‚,j
“

à

e`2k“j

Cer´ks‘mpe,kq and Gr‚,j´1
ℓ “

à

e`2k“j

ψpCer´ks‘mpe,kqq.

The restriction of ψ to Cer´ks is an isomorphism in degree i if i ă e` k. Since j{2 “ e{2` k, we
see that i ă e` k, giving the result. □

From the definition of the forms Q on Gr and Qℓ on Grℓ, obtained in terms of lifting to M and
Mℓ, we get the following compatibility.

Corollary 4.11. For all x P Gri,j and y P Grd´i´1,2d´j , we have

QℓpGrψpxq,Grψpyqq “ Qpx, ℓyq.

Choose some η P KA, and let Mη “ M{ annM pηq. Let φ : M Ñ Mη be the quotient map. Note
that (HL) implies that φ is an isomorphism in degree less than d{2.

Proposition 4.12. The map φ : M Ñ Mη satisfies φpPjq Ď Pη,j . The induced map Grφ : Gri,j Ñ

Gri,jη is injective if j ă d.

Proof. That φpPjq Ď Pη,j follows from the description of the perverse filtration in (1.2). Choose
some ℓ P KB , and note that Corollary 4.5 implies that Gr‚,j and Gr‚,j

η are representations of sl2,
where ℓ acts as a raising operator. Furthermore, the map Grφ is a map of representations of sl2.
In particular, in order to check that it is injective for j ă d, it suffices to check that it is injective
when restricted to kerpℓj´2i`1 : Gri,j Ñ Grj´i`1,j

q for each i ď j{2.

If i ă j{2, then, using Proposition 4.10, we may replaceM byM{ annM pℓj´2iq; by Lemma 4.6,
this is still a Lefschetz module. So we may assume that j “ 2i. By Section 4.2, we have an
identification of A-modules

à

i

kerpℓ : Gri,2i Ñ Gri`1,2i
q “

annM pℓq

ℓM X annM pℓq
¨

Suppose we have x P kerpℓ : Gri,2i Ñ Gri`1,2i
q, with i ă d{2. Then Grφpxq “ 0 if and only if x

is in the kernel of the map

annM pℓq

ℓM X annM pℓq
ÝÑ

annMη
pℓq

ℓMη X annMη pℓq
¨
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I.e., lifting x to x̃ P M , we have φpx̃q “ ℓ ¨ y for some y P M i´1
η . Using (PD), we can identify

Mηr´1s with ηM Ď M . Then this means that η ¨ x̃ “ η ¨ ℓ ¨ y in M i`1. By (HL), as i ă d{2, this
implies that x̃ “ ℓ ¨ y, so x vanishes in Gri,2i, as required. □

From the definitions of the bilinear forms Q and Qη , we have the following compatibility.

Corollary 4.13. For all x P Gri,j and y P Grd´i´1,2d´j´2, we have

QηpGrφpxq,Grφpyqq “ Qpx, η ˚ yq.

5. RELATIVE HARD LEFSCHETZ, RELATIVE HODGE–RIEMANN, AND DECOMPOSITION

In this section, we prove the relative Hard Lefschetz property and the relative Hodge-Riemann
relations, stated in Theorem 1.5 and Theorem 1.7, as well as the Decomposition Theorem 1.10.
We first prove Theorem 1.5 and Theorem 1.7 simultaneously by induction on the degree d of the
Lefschetz module M , and then we deduce Theorem 1.10.

Proposition 5.1. Suppose that Theorems 1.5 and 1.7 hold for every Lefschetz module of degree
at most d´ 1. Then, for all 0 ď j ď d and for all η P KA, the linear map

Gr‚,j
ÝÑ Gr‚`d´j,2d´j , x ÞÝÑ ηd´j ˚ x

is an isomorphism.

Proof. We first show that the map is injective. Choose some ℓ P KB . By Corollary 4.5, there are
sl2 actions on Gr‚,j and Gr‚`d´j,2d´j where ℓ acts as the raising operator, and ηd´j˚ is a map of
representations of sl2. In order to check that this map is injective, it suffices to check that it is
injective on kerpℓj´2i`1 : Gri,j Ñ Grj´i`1,j

q for each i ď j{2. If j “ d, then ηd´j˚ is the identity,
so we may assume j ă d. Suppose we have some element

x P kerpℓj´2i`1 : Gri,j Ñ Grj´i`1,j
q X kerpηd´j˚ : Gri,j Ñ Gri`d´j,2d´j

q.

Let φ : M Ñ Mη “ M{ annM pηq be the quotient map, and let Grφ : Gr Ñ Grη be the associated
graded, see Proposition 4.12. By construction, we have

Grφpxq P kerpℓj´2i`1 : Gri,jη Ñ Grj´i`1,j
η q X kerpηd´j´1˚ : Gri,jη Ñ Gri`d´j,2d´j

η q.

I.e., Grφpxq lies in the pi, jqth graded piece of the primitive part of Grη . By induction on the
degree d, we have

p´1qiQηpGrφpxq, ηd´j´1 ˚ ℓj´2i Grφpxqq ě 0,

with equality if and only if Grφpxq “ 0. By Corollary 4.13, we have

QηpGrφpxq, ηd´j´1 ˚ ℓj´2i Grφpxqq “ Qpx, ηd´j ˚ ℓj´2ixq “ 0,

so we get that Grφpxq “ 0. By the injectivity part of Proposition 4.12, we get that x “ 0.

We have shown that ηd´j˚ is injective. Multiplying by ℓj´2i and using Corollary 4.5, we have
an injection

ηd´j ˚ ℓj´2i : Gri,j ãÑ Grd´i,2d´j .
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By Proposition 4.9, dimGri,j “ dimGrd´i,2d´j , so this map is an isomorphism. This proves that
ηd´j˚ is an isomorphism. □

Once we know that the conclusion of Proposition 5.1 holds for a Lefschetz module M , then
we may decompose Gr into primitive pieces as in (1.5).

Proposition 5.2. Suppose that Theorem 1.5 and Theorem 1.7 hold for every Lefschetz module
of degree at most d ´ 1. If pi, jq ­“ pd{2, dq, then for any η P KA and any ℓ P KB , the symmetric
bilinear form on Gri,j defined by

px, yq ÞÝÑ p´1qiQpx, ηd´j ˚ ℓj´2iyq

is positive definite when restricted to Primi,j .

Proof. Let x P Primi,j be a nonzero element. First suppose that j ă d. Then, by Proposition 4.12,
there is an injective map Grφ : Gri,j Ñ Gri,jη . Because Theorem 1.7 holds for Mη , noting that
Grφpxq remains primitive, we have that

p´1qiQηpx, ηd´j´1 ˚ ℓj´2ixq ą 0.

The result then follows from Corollary 4.13. The case when j “ d, but i ă d{2 is identical, except
using Proposition 4.10 and Corollary 4.11. □

We now deal with the remaining primitive part, Primd{2,d, in the case when d is even. We
do this by an analysis of the signature of the restriction of Q to Grd{2,‚. A different approach to
the same problem is given in [dCM05, Section 5.4]. We begin by computing the signature of the
restriction of Q to Grd{2,‚.

Proposition 5.3. The signature of the restriction of Q to Grd{2,‚ is

d{2
ÿ

i“0

p´1qipdimM i ´ dimM i´1q.

Proof. Let bj “ dimGrd{2,j . Note that Proposition 4.9 implies that bj “ b2d´j . Let rj “
ř

eďj be,
and let r “ dimMd{2. Choose a basis x1, x2, . . . , xr for Md{2 so that xrj´1`1, . . . , xrj lie in Pj X

Md{2; then the xi also give a basis for Grd{2,‚. Let T be the symmetric matrix with Ts,t “

Qpxs, xtq, so T represents the restriction of Q to Md{2. Note that (HR) implies that the signature
of T is

d{2
ÿ

i“0

p´1qipdimM i ´ dimM i´1q.

We can divide T into blocks, representing how different pieces of the perverse filtration pair
with each other. By Lemma 4.7, T vanishes northwest of the blocks along the main antidiagonal,
which represent the pairing of complementary pieces of the perverse filtration.
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The matrix representing the restriction of Q to Grd{2,‚ is obtained by setting the entries in
the blocks below the antidiagonal to 0. In particular, Q has the same signature as Q, giving the
result. □

Assuming Theorem 1.5 and 1.7 for all Lefschetz modules of degree at most d ´ 1, Proposi-
tion 5.1 and 5.2 imply that we have a decomposition

Grd{2,‚
“

à

jďd
iďj{2

à

sďd´j
tďj´2i

s`t“d{2´i

ηs ˚ ℓt Primi,j .

This decomposition is close to being orthogonal with respect to Q: we have

Qpηs ˚ ℓt Primi,j , ηs
1

˚ ℓt
1

Primi1,j1

q “ 0

unless i “ i1, j “ j1, s`s1 “ d´ j, and t` t1 “ j´2i. We group the summand ηs ˚ ℓt Primi,j with

the summand ηd´j´s ˚ ℓj´2i´t Primi,j . Because the signature of a matrix of the form

˜

0 U

U 0

¸

,

where U is symmetric, is always 0, a summand where s ­“ d ´ j ´ s (which is equivalent to
t ­“ j ´ 2i ´ t) contributes 0 to the signature. In particular, the signature of Q is the same as the
signature of the restriction of Q to Grd{2,d. The decomposition of Grd{2,d is simpler: we have

Grd{2,d
“

à

jďd even
iďj{2

ηpd´jq{2 ˚ ℓj{2´i Primi,j .

Lemma 5.4. We have
d{2
ÿ

i“0

p´1qipdimM i ´ dimM i´1q “
ÿ

jďd even
iďj{2

p´1qi dimPrimi,j .

Proof. We decompose M as in (1.5) and compute the contribution to the left-hand side of the
terms associated to Primi,j . For each p, the dimension of the sum of the pieces associated to
Primi,j in Grp,‚ is dimPrimi,j times the number of pairs ps, tq with s ` t “ p ´ i, 0 ď s ď d ´ j,
and 0 ď t ď j ´ 2i.

The number of such pairs is 0 for p ă i, increases by one when we increase p by one until p
reaches minpd´ j, j´ 2iq (which happens for some p ď d{2), and then is constant until p reaches
d{2. We see that the contribution to the left-hand side of the terms associated to Primi,j is

ÿ

0ďqďminpd´j,j´2iq

p´1qi`q dimPrimi,j .

Note that, because d is even, d´ j and j ´ 2i both have the same parity as j, so this sum is 0 if j
is odd and is p´1qi dimPrimi,j if j is even. □

Proposition 5.5. Suppose that Theorem 1.5 and Theorem 1.7 hold for every Lefschetz module
of degree at most d´ 1. Suppose that d is even. Then, for any η P KA and ℓ P KB , the restriction
of p´1qd{2Q to Primd{2,d is positive definite.
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Proof. Let n be the signature of Q on Primd{2,d. By Proposition 5.3 and Lemma 5.4, the signature
of Q on Grd{2,‚ is

d{2
ÿ

i“0

p´1qipdimM i ´ dimM i´1q “
ÿ

jďd even
iďj{2

p´1qi dimPrimi,j .

On the other hand, using Proposition 5.2 and the discussion above about the decomposition
being nearly orthogonal with respect to Q, the signature of Q on Grd{2,‚ is

n`
ÿ

jďd even
iďj{2

pi,jq­“pd{2,dq

p´1qi dimPrimi,j .

Comparing these expressions gives that n “ p´1qd{2 dimPrimd{2,d. □

Proof of Theorem 1.5 and Theorem 1.7. We induct on d. Both statements are trivial when d “ 0.
If Theorems 1.5 and 1.7 hold for all Lefschetz modules of degree at most d ´ 1, then Proposi-
tions 5.1, 5.2, and 5.5 imply that the conclusions of Theorem 1.5 and Theorem 1.7 hold for all
η P KA. Viewed as a subset of A1, the action of B1 on Gr is 0. Then the result follows, as
η P KA{B if and only if there is b P B1 such that η ` b P KA. □

We now prove Theorem 1.10. We show that it is a formal algebraic consequence of Theo-
rem 1.5, following ideas of Deligne [Del68]. See also [VdB04, dC13].

Proof of Theorem 1.10. Choose η P KA{B . We produce a splitting as a graded R-module of the
inclusion P0 ãÑ M by the following composition:

M M Gr‚,2d
“ M{P2d´1 P0.

ηd pηd
q

´1

This induces a direct sum decomposition M “ P0 ‘M 1 “ Gr‚,0
‘M 1 as graded R-modules. The

perverse filtration on M restricts to a filtration on M 1 whose associated graded is ‘2d
j“1 Gr‚,j .

We have a splitting of the map M 1 Ñ Gr‚,2d given by the composition

Gr‚,2d Gr‚,0 M M M 1.
pηd

q
´1 ηd

This induces a direct sum decomposition M 1 “ Gr‚,2d
‘M2 as graded R-modules. Through the

same procedure, we can split off Gr‚,1 and Gr‚,2d´1, and so on. This proves the theorem. □

6. DUALITY, POLARIZATION, AND SIMPLICITY

In this section, we prove Theorems 1.1, 1.2, 1.3, and 1.4. Our strategy is to use Theorem 1.5
and Theorem 1.7 to construct a bilinear form onNα so that it is a Lefschetz module over pB,KBq.
This proves Theorem 1.3. We then use this Lefschetz module and results of Looijenga–Lunts and
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Verbitsky [LL97, Ver95] to prove Theorem 1.1. We then use this to deduce the uniqueness of the
bilinear form, proving Theorem 1.2 and 1.4.

Before continuing, we will need to establish some elementary facts about Lefschetz modules.
The following two lemmas are immediate.

Lemma 6.1. Let N be a Lefschetz module of degree e over pB,KBq, equipped with a bilinear
form QN . Let k P Z be such that N r´ksi “ 0 for all i ă 0. Then N r´ks, equipped with the
bilinear form p´1qkQN , is a Lefschetz module of degree e` 2k over pB,KBq.

Lemma 6.2. Let N1 and N2 be Lefschetz modules of degree e over pB,KBq, equipped with
bilinear forms Q1 and Q2. Then N1 ‘ N2, equipped with Q1 ‘ Q2, is a Lefschetz module of
degree e over pB,KBq.

We will also need the following result.

Lemma 6.3. Let N be a Lefschetz module of degree e over pB,KBq, equipped with a bilinear
form QN . Then any graded B-module summand of N , equipped with the restriction of QN , is a
Lefschetz module of degree e over pB,KBq.

Proof. Suppose we have a graded B-module decomposition N “ N1 ‘N2. For each i ď e{2 and
ℓ P KB , the map N i

1 Ñ Ne´i
1 given by multiplication by ℓe´2i is injective, so dimN i

1 ď dimNe´i
1 .

Similarly, dimN i
2 ď dimNe´i

2 . As dimN i “ dimN i
1 ` dimN i

2 and dimN i “ dimNe´i by (HL),
we see that dimN i

1 “ dimNe´i
1 , and so (HL) holds for N1. For any ℓ, we have

kerpℓe´2i`1 : N i
1 Ñ Ne´i`1

1 q “ N i
1 X kerpℓe´2i`1 : N i Ñ Ne´i`1q.

In particular, by (HR) for N , QN is definite on this subspace of N i
1. This implies (PD) and (HR)

for N1, and the lemma follows. □

6.1. Duality. Choose η P KA{B . By Theorem 1.5, we have a primitive decomposition with
respect to η, as follows. Set Kj

η “ kerpηd´j`1 : Gr‚,j
Ñ Gr‚`d´j`1,2d´j`2

q. Then we have a
decomposition

(6.1) Gr »
à

0ďjďd

à

0ďiďd´j

ηi ˚ Kj
η .

Because η˚ is a map of B-modules, this is an isomorphism of B-modules.

We equip each Kj
η with the symmetric bilinear form px, yq ÞÑ Qpx, ηd´j ˚ yq. Recall that by

Corollary 1.8, each Kj
η is a Lefschetz module of degree j over pB,KBq.

Proposition 6.4. Each Nα admits a B-invariant symmetric bilinear form Qα : Nα ˆ Nα Ñ R so
that it is a Lefschetz module of degree dpαq over pB,KBq.

Proof. Refine the decomposition given in (6.1) of Gr into a decomposition into indecomposable
B-modules. By Theorem 1.10, Gr is isomorphic to M as graded B-modules, so by the Krull–
Schmidt theorem, some summand must be isomorphic to a shift of Nα. For each i, ηi ˚ Kj

η is
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either isomorphic to Kj
η as B-modules or is 0. The primitive decomposition then implies that

there is some k and j such that Nαr´ks is a summand of Kj
η ; we must have 2k ` dpαq “ j.

By Lemma 6.3, Nαr´ks is equipped with a bilinear form that gives it the structure of a Lef-
schetz module of degree 2k ` dpαq over pB,KBq. The result then follows from Lemma 6.1. □

Although we do not yet know the uniqueness of the symmetric bilinear form, and so we
cannot formulate Theorem 1.4, we know enough to prove Theorem 1.3.

Proof of Theorem 1.3. This is immediate from Proposition 6.4 □

6.2. Simplicity. We now associate a Lie algebra to a Lefschetz module N of degree e over
pB,KBq, using a construction introduced by Looijenga–Lunts and Verbitsky [LL97, Ver95].

For each ℓ P KB , the fact that multiplication by ℓe´2i : N i Ñ Ne´i is an isomorphism means
that there is a corresponding representation of the Lie algebra sl2, where the raising operator
corresponds to multiplication by ℓ. Let gN be the Lie subalgebra of EndpNq generated by the
raising and lowering operators associated to all ℓ P KB . The following result was proved inde-
pendently by Looijenga–Lunts and Verbitsky.

Proposition 6.5 ([LL97, Proposition 1.6]). LetN be a Lefschetz module of degree e over pB,KBq.
If e ą 0, then gN is a semisimple Lie algebra.

The Lie algebra gN has a distinguished semisimple element H , the common semisimple ele-
ment in all of the sl2 triples that generate gN . The action of H on N records the grading.

If N1, N2 are Lefschetz modules of degree e, then, by Lemma 6.2, N “ N1 ‘N2 is a Lefschetz
module of degree e. The action of gN preserves N1 and N2, and we see from the construction of
gN that there are surjective homomorphisms gN Ñ gN1

and gN Ñ gN2
.

We will now show that, in many cases, morphisms ofB-modules between Lefschetz modules
of the same degree can be upgraded to morphisms of representations of these Lie algebras.

Proposition 6.6. Let N1, N2 be Lefschetz modules of degree e over pB,KBq. Let φ : N1 Ñ N2

be a map of abelian groups. Then φ is a map of graded B-modules if and only if it is a map of
gN1‘N2 representations.

Proof. First suppose that φ is a map of gN1‘N2
representations. This implies that φ commutes

with the action of any ℓ P KB . Because KB is open, we see that φ commutes with the action
of any b P B1. Because B is generated by B1, we see that φ is a map of B-modules. Because
the action of the distinguished semisimple element commutes with φ, we see that φ respects the
grading.

Now suppose that φ is a map of graded B-modules. Let Γ Ď N1 ‘N2 be the graph of φ. It is
enough to show that Γ is a gN1‘N2

-subrepresentation.
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For each ℓ P KB , we can choose a decomposition of N1 into indecomposable graded Rrℓs-
modules. Because N1 satisfies (HL), each summand in the decomposition will be isomorphic to
Rrℓs{pℓf`1qr´ks for some f and k with 2k`f “ e. By (HL), every Rrℓs-submodule ofN2 is of the
form Rrℓs{pℓf

1
`1qr´k1s for some f 1 and k1 with 2k1 `f 1 “ e. There is no nonzero homomorphism

of graded Rrℓs-modules from Rrℓs{pℓf`1qr´ks to Rrℓs{pℓf
1
`1qr´k1s unless f 1 “ f and k1 “ k, so

the action of the raising and lowering operators on N1 ‘N2 must preserve each Rrℓs{pℓf`1qr´ks

in Γ. This implies Γ is preserved by the corresponding sl2.

For each ℓ P KB , the action of the sl2 commutes with φ. As these sl2 subgroups generate
gN1‘N2

, we see that gN1‘N2
preserves Γ. □

By Lemma 6.2, a direct summand of a Lefschetz module N of degree e is a Lefschetz module
of degree e. Then Proposition 6.6 implies that this direct summand is a gN subrepresentation.
Because gN is semisimple if e ą 0, any gN subrepresentation is a gN summand, and so a graded
B-module summand by Proposition 6.6. In particular, we have the following result.

Corollary 6.7. Let N be a Lefschetz module over pB,KBq of degree e. Then N is an irreducible
gN representation if and only if N is indecomposable as a graded B-module.

Proof of Theorem 1.1. By shifting both Nα and Nβr´ks, we can assume that Nβr´ks is nonnega-
tively graded and so is a Lefschetz module. The statement is clear if e “ 0.

We assume that e ą 0. If dpαq ` 2k “ dpβq, then Nα and Nβr´ks are Lefschetz modules
of the same degree. Let g be the semisimple Lie algebra associated to Nα ‘ Nβr´ks. Because
they are indecomposable, Corollary 6.7 implies Nα and Nβr´ks are irreducible representations
of g. In particular, HomgpNα, Nβr´ksq “ 0 unless they are isomorphic, i.e., unless α “ β. By
Proposition 6.6, this implies that HomBpNα, Nβr´ksq “ 0 unless α “ β. If α “ β, then we have
k “ 0. Because they are irreducible representations of the semisimple Lie algebra g, we have
HomgpNα, Nαq “ HomBpNα, Nαq is isomorphic to R,C, or H.

Now suppose that dpαq`2k ă dpβq, and let φ : Nα Ñ Nβr´ks be a map of gradedB-modules.
Choose some ℓ P KB . By (HL), Nα is generated as a B-module by

ď

iďdpαq{2

kerpℓdpαq´2i`1 : N i
α Ñ Ndpαq´i`1

α q.

For any i ď dpαq{2 and x P kerpℓdpαq´2i`1 : N i
α Ñ N

dpαq´i`1
α q, we have ℓdpαq´i`1φpxq “ 0, so

φpxq “ 0 by (HL) for Nβ . This implies that φ “ 0. □

Proof of Theorem 1.2. In the proof of Proposition 6.4, we have constructed a nondegenerate sym-
metric B-invariant bilinear form Qα which gives Nα the structure of a Lefschetz module. Let
Q1 be another symmetric B-invariant bilinear form on Nα which respects the grading. Because
Qα is nondegenerate and Q1 is B-invariant, there is an endomorphism ϕ : Nα Ñ Nα of graded
B-modules such that, for all x, y P Nα, we have Q1px, yq “ Qαpϕpxq, yq. By Theorem 1.1, the ring
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of graded B-module endomorphisms of Nα is isomorphic to either R,C, or H. If it is isomor-
phic to R, then Q1 is a constant multiple of Qα, as desired. Otherwise, we may assume that the
endomorphism ring is isomorphic to either C or H. By replacing Q1 by Q1 ´ λQα for some λ P R,
we may assume that ϕ is purely imaginary (and nonzero). In particular, ϕ2 “ c for some c ă 0.
We have

Qαpx, ϕpyqq “ Qαpϕpyq, xq “ Q1py, xq “ Q1px, yq “ Qαpϕpxq, yq,

so ϕ is self-adjoint with respect to Qα. Choose some ℓ P KB . Suppose that Nα has degree e,
and that the lowest nonzero graded piece of Nα is N i

α. Choose some nonzero x P N i
α. By

Theorem 1.1, ϕ is an automorphism, so ϕpxq is nonzero. We have

Qαpℓe´2iϕpxq, ϕpxqq “ Qαpℓe´2ix, ϕ2pxqq “ cQαpℓe´2ix, xq.

As c ă 0, this contradicts (HR). □

Proof of Theorem 1.4. In Proposition 6.4, we showed thatNα has the structure of a Lefschetz mod-
ule over pB,KBq for someB-invariant symmetric bilinear form Qα. The definition of a Lefschetz
module implies that (HR) holds for Nα when equipped with Qα; we just need to prove the
uniqueness part of Theorem 1.4. By Theorem 1.2, the choice of a B-invariant symmetric bilinear
form is unique up to a constant. As Nα ­“ 0, cQα does not satisfy (HR) for any c ă 0, proving
the uniqueness of ϵα in the statement of the theorem. □
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