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Abstract

In this paper we prove the following result about vertex list colourings, which shows
in particular that a conjecture of the second author (1999, Journal of Graph Theory
31, 149-153) is true for triangle free graphs of large maximum degree. There exists
a constant K such that the following holds: Given a graph G, and a list assignment
L to vertices of G, assigning a list of colours L(v) to each vertex v ∈ V (G), such
that |L(v)| = K∆

log(∆) , and for each element c ∈
⋃

L(v), the graph induced on vertices

v, with c ∈ L(v) is triangle free and has maximum degree at most ∆, then there
exists a proper list colouring of G.
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1 Presentation of the problem

Most of the terminology and notation we use in this paper is standard and
can be found in any text book on graph theory ( such as [3] or [4] ).

Let G = (V, E) be a graph. A list assignment to vertices of G associates a
list L(v) of available colours to a vertex v ∈ V . A proper L-colouring of G is a
proper colouring, i.e. a colouring in which neighbours have different colours,
such that the colour of the vertex v belongs to L(v).

Given a colour c in L =
⋃

v∈V L(v), we denote by Gc the graph induced on
all vertices v with c ∈ L(v), i.e.

Gc = G[{v ∈ V | c ∈ L(v)}]

By ∆ we denote the integer number maxc∈L ∆(Gc), and we write `(v) =
|L(v)|. It was conjectured by Reed in [8] that if `(v) ≥ ∆ + 1 then G admits
a proper L-colouring. Bohman and Holtzman [2] provide a counter-example
to this conjecture. Reed [8] and Haxell [5] prove a sufficient linear bound of
type, respectively, `(v) ≥ 2e∆ and |L(v)| ≥ 2∆ for the existence of a proper
L-colouring. Furthermore Reed and Sudakov [9] prove that the conjecture is
asymptotically true. An intriguing open question is then

Question 1 Is there any constant C, such that for every G and L as above,
with the extra condition that |L(v)| ≥ ∆+C, G admits a proper L-colouring?

The work of this paper is motivated by the above question restricted to
triangle free graphs. We prove the following theorem which in particular
provides an answer to the above question for triangle free graphs.

Theorem 1.1 Let G be a graph, and L be a list assignment as above. Sup-
pose that each subgraph Gc is triangle free. There exists an absolute constant
K such that if |L(v)| ≥ K∆

log ∆
then G admits a proper L-colouring.

The general idea of the proof comes from Johansson’s proof [6] that tri-
angle free graphs have list chromatic number at most O( ∆

log(∆)
). It uses a

randomised greedy algorithm [6], known as semi-random method, which at
each step, consists of a) colouring a small set of vertices, b) removing from
the lists of all neighbours the colours of these vertices, and c) removing all the
coloured vertices. The main point of this approach is the key observation that
with a good choice of parameters, the size of lists shrinks more slowly than
the maximum degree of the colour classes Gc, and so after a sufficient number
of iterations, each list should contain a number of colours at least twice the
maximum degree of colour classes. At this stage, one can finish the colouring
using Haxell’s deterministic theorem [5]. The analysis of this algorithm uses



classical concentration tools but also needs the polynomial method of [7], and
is similar to Vu’s approach in [11].

2 Proof of Theorem 1.1: Preliminaries

An L-distribution is the following data: For each vertex v and each c ∈ L(v),
we are given a non-negative weight p(v, c) < 1. Given an L-distribution
{p(v, c)}, by C(v) we denote the total weight of colours at v; i.e. C(v) =
∑

c∈L(v) p(v, c). An L-distribution is called normalised if in addition we have

C(v) = 1 for all v ∈ V (G). An L-distribution proposes a natural way for
generating sets of colours at a given vertex v: For each colour c ∈ L(c), we
conduct a coin flip with probability of win equal to p(v, c), and generate c if we
win. So with probability p(v, c), c is generated for v. Note that C(v) will be
the expected number of generated colours for v. Given two adjacent vertices
u and v, and a common colour c ∈ L(u) ∩ L(v), the probability that c is
generated for u and v is p(u, c)p(v, c). By xv,u we will denote the expected
number of common generated colours for v and u. We have

xv,u =
∑

c∈L(v)∩L(u)

p(v, c)p(u, c)

On the other hand, applying a simple Chebyshev inequality, we have

Prob( there exists at least one colour generated for both v and u) ≤ xuv

To prove Theorem 1.1, we use the Generalised Wastefull Colouring Proce-
dure (GWCP). The greedy algorithm then consists of several iterations, let us
say T , of the proposed procedure GWCP. We suppose that two global fixed
parameters α and α∗ are also given (the choice of α and α∗ will become clear
later). At each iteration, GWCP takes as an input a subset Vi ⊂ V (G) (the
set of uncoloured vertices), a list assignment Li, an Li-distribution {pi(v, c)}
and a subset Fi(v) ⊂ L(v) for each vertex v (the set of forbidden colours for v).
It then provides as output a subset Vi+1 ⊂ Vi, a new list assignment Li+1 ⊂ Li,
an updated Li+1-distribution {pi+1(v, c)}, and a new subset Fi+1(v) ⊂ L(v) of
forbidden colours (Fi(v) ⊂ Fi+1(v)). The general scheme of the procedure at
the beginning of the ith iteration is described below:

Generalised Wastefull Colouring Procedure:

(i) Generating colours For each vertex v ∈ Vi, activate v with probabil-
ity α and generate a set of colours for v relative to the Li distribution



{pi(v, c)}. In other words, choose the colour c for v with probability
α.pi(v, c).

(ii) Updating the lists: For each activated vertex v and each generated
colour c for v, remove c from the lists of all neighbours u of v for which
c is not forbidden, i.e. if c /∈ Fi(u). The new lists will be called Li+1.

(iii) Colouring some vertices: For an activated vertex v with a generated
set of colours Cv, choose one arbitrary colour for v from Cv ∩ (Li+1(v) \
Fi(v)) if it is possible, i.e. if Cv ∩ (Li+1(v) \ Fi(v)) 6= ∅. Define Vi+1 to be
the set of still uncoloured vertices after this step.

(iv) Updating the probabilities and the new sets of forbidden colours:
The way we update the weights of colours, i.e. the definition of pi+1(v, c),
and so Fi+1(v), is described below. .

Let us first define some more notations: L′
i := Li \Fi is the set of available

colours at v at step i. `i(v) will denote the cardinality of L′
i(v). Gi,c is the

graph induced on vertices v with c ∈ L′
i(v). For a vertex v with a colour

c ∈ L′
i(v), by di,c(v) we will represent the degree of v in Gi,c. We initialise

d1,c(v) = ∆ and `1(v) = K∆
log ∆

, for some large constant K which we will precise
later.

As mentioned earlier the algorithm repeats the above procedure T times.
With a careful choice of parameters, after T iterations with positive probability
the minimum size of available colours minv∈VT

`T (v) will be at least twice the
max-degree of each colour class GT,c, and so we can finish the colouring using
Haxell’s theorem.

We now describe the way we update the Li-distributions and the sets Fi:
At the beginning, we define the distribution {p1(v, c)} to be the uniform nor-
malised distribution on L(v), i.e.:

p1(v, c) =







1
`1(v)

, if c ∈ L1(v)

0 otherwise

Once again, remark that all through this paper if a colour does not belong to
the original list L(v), we suppose that the weight of this colour is zero.

Let us define Keepi(v, c) to be the probability that v keeps the colour c
after the step updating the lists of the ith iteration, i.e.

Keepi(v, c) = Prob( c ∈ Li+1(v)).



For a given vertex v and given colour c ∈ Li+1(v), we will define {pi+1(v, c)}
essentially as follows:

• If pi(v,c)
Keepi(v,c)

≤ α∗, define pi+1(v, c) = pi(v,c)
Keepi(v,c)

;

• If c ∈ Fi(v, c) then we set pi+1(v, c) = α∗

• Otherwise, pi(v,c)
Keepi(v,c)

> α∗ > pi(v, c). If c is not assigned to any neighbour

of v during the ith iteration, we set pi+1(v, c) = α∗. If c is assigned to
a neighbour of v, then conduct a coin flip with probability of win equal

to
pi(v,c)

α∗
−Keepi(v,c)

1−Keepi(v,c)
, and define pi+1(v, c) = α∗ if we win, and pi+1(v, c) = 0

otherwise.

It is not difficult to see that with this definition we have

E(pi+1(v, c)) = pi(v, c)(1)

Now, define Fi+1 = {c | pi+1(v, c) = α∗}. We have Fi(v) ⊂ Fi+1(v).
Roughly speaking, the set Fi(v) contains all colours whose weights become
very large at some step of the algorithm. By very large we mean larger than
the probability α∗ that we fix as a global parameter (to be specified later) .

Note that {pi(v, c)} does not remain necessary a normalised distribution
on Li(v), i.e. in general we can have Ci(v) 6= 1. On the other hand, Equation 1
implies that:

E(Ci+1(v)) = Ci(v).

As we shall see, the variable Ci is highly concentrated around its expected
value, which implies that Ci(v) ∼ 1 3 .

How about the random variables xu,v at the (i + 1)th iteration, which we
denote by xi+1,u,v? How their values evolve by time 4 ? Remember that

xi+1,u,v =
∑

c

pi+1(u, c)pi+1(v, c)

The first remark concerning xi+1,u,v goes as follows: as the graphs Gc is triangle
free, it follows that the variables pi+1(u, c) and pi+1(v, c) are independent and
so we have E(xi+1,u,v) =

∑

c E(pi(u, c))E(pi+1(v, c)) =
∑

c pi(u, c)pi(v, c) =
xi,u,v. It turns out that these variables are also highly concentrated around
their expected value, which roughly permits us to conclude that with positive
probability, we can ensure xi,u,v ∼ x1,u,v =

∑

c p1(u, c)p1(v, c) = |Lu∩Lv |

`21
.

3 Remember that this in particular means that for an activated vertex the expected number
of generated colours will be ∼ 1.
4 Remark that in the ith iteration, xi+1,u,v is a random variable which depends on the
random choices we make at this step, while we have already from previous iterations the
values of pi(v, c) and so xi,u,v .



Before going through the details, we now provide an intuitive explanation
of why the above algorithm should work and provide a proof of Theorem 1.1.
The first remark is that with high probability, if a vertex is activated it will
get a colour. As the probability of activating a vertex is α, this means that
the degree sequence shrinks exponentially, more precisely we have di+1,c(v) ≤
(1 − α)i∆.

For each i and each v ∈ Vi−1, we now define a new random variable ti,v as
follows:

ti,v =







1 if v remains uncoloured after the (i − 1)th iteration, i.e. v ∈ Vi;

0 if v gets a colour, i.e. v /∈ Vi.

It is clear 5 that

di,c(v) ≤
∑

u∈NGi−1,c(v)

ti,u.(2)

For a given vertex v, let us define the random variable xi,v as follows:

xi,v =
∑

u∈NGi−1
(v)

xi,v,uti,u.(3)

Remark that because xi,u,v =
∑

c pi(v, c)pi(u, c) counts the expected num-
ber of common colours in generating colours for u and v with respect to Li-
distribution {pi(v, c)}, and the random variables ti,u represents the presence
or non presence of a given vertex u in Gi, the random variable xi,v has this
simple interpretation:
xi,v counts the expected number of common colours between v and one of its
neighbours in Gi with respect to the distribution Li.

Remark the similarity between the two equations 2 and 3 above: Equa-
tion 3 can be seen as a weighted version of 2. As we said xi,u,v is highly

concentrated and so xi,u,v ∼ |L(u)∩L(v)|

`21
≤ 1

`1
. Intuitively Eti,u ∼ 1−α 6 , which

implies

E(di,c(v)) ≤ (1 − α)di−1,c(v).

E(xi,v) ∼
∑

u∈NGi−1
(v)

xi−1,u,vE(ti,u) ∼ (1 − α)(
∑

pi−1(u, c)pi−1(v, c)) ∼ (1 − α)xi−1,v.

The above equality then simply states that in some sense the changes in
xi,v (resp. di,c), from one step to the next one, should be as xi,v ∼ (1−α)xi−1,v

5 we have an inequality here because it is possible that u loses the colour c.
6 Remark that xi,u,v and ti,u are not independent, but it turns out that these two random
variables are not to much correlated.



(resp. (1 − α)di−1,c)
7 .

It is clear that at the beginning we have

x1,v =
∑

c

∑

u

1

`2
1

=
∆ × `1

`2
1

=
∆

`1
=

log(∆)

K
.

The remaining part of this intuitive proof is similar to Johansson’s proof
in [6]. Let us introduce the entropy function

Hi(v) = −
∑

c

pi(v, c) log(pi(v, c)).

Remark that eHi(v) =
∏

c pi(v, c)−pi(v,c). It turns out that eHi(v) provides
a lower bound for the number of colours in Li(v). The intuitive idea is the
following: because of the concentration phenomena, we should have Ci =
∑

c pi(v, c) ∼ 1. With the extra hypothesis that the distribution {pi(v, c)} is
almost uniform, i.e. pi(v, c) ∼ 1

`i
, we infer that

eHi(v) = (
1

`i

)−
P

pi(v,c) ∼ `i.

which is what we claimed 8 .

Now the main fact is that writing the changes in entropy step by step, we
can see that the random variables xi,v enters to the picture very naturally:
indeed, we have

Keepi−1(v, c) ∼
∏

u∈NGi−1,c(v)

(1 − α.pi−1(u, c)) ∼ eα.(
P

pi−1(u,c)).

and roughly we have pi(v, c) = pi−1(v,c)
Keepi−1(v,c)

., which implies

Hi(v) − Hi−1(v) = −αxi,v − (pi(v, c) − pi−1(v, c)) log(pi(v, c)).

It turns out that we can ignore the second term on the right:

Hi(v) − Hi−1(v) ∼ −αxi,v

7 Unfortunately xi,v (resp.
∑

u∈NGi−1,c
(v) ti,u ) can have big Lipschitz coefficients, which

roughly means that writing xi,v (resp.
∑

u∈NGi−1,c
(v) ti,u) as a function of the corresponding

binary variables, changing the outcome of one variable can make a big change in the outcome
of xi,v . This in particular forbids us to use the classical concentration tools, i.e. Talagrand
or Azuma’s inequalities, to state that with positive probability this is satisfied. We will see
further a way to encounter the problem. For now on, let us suppose that this is true, and
continue our arguments.
8 Of course here we ignore completely the set Fi(v), as we will see the size of Fi(v) will be
small enough.



and so

Hi(v) − Hi−1(v) ∼ −α(1 − α)i−1 ∆

`1
.

Summing up over all i and using `1 = K∆
log(∆)

, we infer

Hi(v) ≥ H1(v) − α(
∑

i≥1

(1 − α)i−1)∆ ≥ log(∆) −
log(∆)

K
= log(∆1− 1

K ).

This proves that after T steps, we can intuitively ensure to have ≥ ∆1− 1
K

colours in each list LT (v).

On the other hand the degree sequence will decrease at least as (1−α)i∆,
and so after T steps we will have dT,c(v) ≤ (1 − α)T∆ ∼ e−αT ∆. If we

choose T and α in such a way to have αT ≥ log(∆)
500

, the above arguments

implie dT,c(v) ≤ e−
log(∆)

500 .∆ = ∆1− 1
500 . Now, if K ≥ 1000 we will have lT (v) ≥

∆1− 1
K ≥ 2∆1− 1

500 ≥ 2.dT,c(v). This finishes the outline of the proof.

Remark 2.1 There are two main issues to handle in the above lines: as one
can easily see the random variables di,c(v) and xi,v behave totally different of
the variables Ci(v) and xi,u,v. This is mainly because of the existence of four
cycles. More precisely, if some other vertex v ′ is connected to a lot of vertices
in N(v), changing a colour associated to v′, can make a big change in di,c(v)
and xi,v. On the other hand, the two random variables, di(v) and xi,v are very
similar in definition. This will permit us to apply the polynomial method of [7]
to both of these variables, to obtain upper bounds on di,c(v) and xi,v. These
upper bounds then can be put together to finish to proof of Theorem 1.1 in
the very same way as the intuitive proof given above.

3 Details

Let α∗ = ∆− 49
50 , α = ∆− 1

20 , K = 1000 and so `1 = 1000∆
log(∆)

, and T = ∆
1
20 log(∆)/20.

Let us introduce the following property:

Property P(i): for each uncoloured vertex v and neighbour u ∈ NGi−1
(v).

Ci(v) = 1 + O(
1

∆
1
60

).

xi,u,v ≤
L(u) ∩ L(v)

`2
1

+
1

`1∆
1
60

.



xi,v ≤ (1 −
α

2
)i−1 log(∆)

K
.

di,c(v) ≤ ∆(1 −
3α

5
)i−1.

Hi(v) − Hi−1(v) ≥ −2αxi,v + o(
1

∆
1
20

).

Below, we prove by induction on i for i ≤ T , that if all the P(j)’s are
verified for j < i, then with positive probability, P(i) is also satisfied. This
implies that with positive probability we can ensure that each P(i) is verified
for i ≤ T . Before, let us explain how to use this result to obtain the proof of
Theorem 1.1:

First, we observe that

HT (v) − H1(v) =

i=T−1
∑

i=1

(Hi+1(v) − Hi(v)) ≥ −2
∑

i

αxi,v + o(∆
1
19 )).

HT (v) ≥ H1(v) − 2
∑

i

α(1 −
α

2
)i−1 log(∆)

K
− o(1).

Remark that H1(v) = −
∑

p1(v, c) log(p1(v, c)) = (1−o(1)) log(∆), so we have

HT (v) ≥ (1 − o(1)) log(∆) − 2α
i=∞
∑

i=1

(1 −
α

2
)i−1 log(∆)

K
− o(1)

so

HT (v) ≥ (1 − o(1)) log(∆) − 4 log(∆)/K − o(1) ≥ log(∆1− 5
K ).

for ∆ large enough. On the other hand by the definition of entropy and the
fact that all the probabilities are bounded by α∗, we have

|LT (v)| ≥
|HT (v)|

−α∗ log(α∗)
≥

log(∆1− 5
K )

49
50

.∆− 49
50 log(∆)

∼ ∆
49
50

Now we want to prove that `T (v), the number of available colours at v, is
at least a constant proportion of |LT (v)|. For this we will bound |FT (v)| as
follows:

By P(i), we have CT (v)−C1(v) = O(∆− 1
60 ). We use the fact that {p1(v, c)}

is uniform to infer that

H1(v) = −
∑

pT (v, c) log(p1(v, c)) + O(∆− 1
60 log(∆)).



We also have HT (v) = −
∑

pT (v, c) log(pT (v, c)). Putting these two equations
together we obtain

H1(v, c) − HT (v, c) =
∑

pT (v, c) log(
pT (v, c)

p1(v, c)
) + O(∆− 1

60 log(∆)).

Each colour c ∈ FT (v) contributes α∗ log(α∗`1) to the above sum. On
the other hand, if pT (v, c) 6= 0 then pT (v, c) ≥ p1(v, c) which implies that the
contribution of the other terms to the above sum is non negative. This implies

α∗ log(α∗`1)|FT (v)| ≤ H1(v) − HT (v) + O(∆− 1
60 log(∆)).

Using the initialisation `1 = K∆
log(∆)

, we obtain

|FT (v)| ≤
H1(v) − HT (v) + O(∆− 1

60 log(∆))

∆− 49
50 ( log(∆)

50
)

.

Recall that H1(v) − HT (v) ≤ log(∆
5
K ), and so

|FT (v)| ≤ ∆
49
50 × 5 × 50/K ≤ ∆

49
50 /4.(4)

But we just observed that

|LT (v)| ≥ ∆
49
50 .

which in turn shows that

|FT (v)| ≤ |LT (v)|/3.

and so

`T (v) ≥ |LT (v)| − |FT (v)| ≥
∆

49
50

2
.

Now we obtain some upper bounds for the degree sequences. By Property
P(i), we have

dT,c(v) ≤ (1 −
3α

5
)T−1∆ ∼ ∆e−

3(T−1)α
5 .

But T = ∆
1
20 log(∆)/20 and α = ∆− 1

20 which implies that

dT,c(v) ≤ (1 −
3α

5
)T−1∆ ∼ ∆1− 3

100 .

This in turn implies that for large ∆

2dT,c(v) ≤ ∆1− 3
100 ≤

∆1− 1
50

2
≤ `T (v).

and so we can finish the colouring using Haxell’s theorem.



Now, let us suppose that at the beginning of the ith iteration, all the prop-
erties P(j) for j < i are verified, we prove that with positive probability P(i)
is also true.

Concentration results I: Bounding Ci − Ci−1 and xi,u,v − xi−1,u,v

To ensure the property P(i) for Ci and xi,u,v we use a variant of Azuma’s
inequality. Here the way it works:

Lemma 3.1 Let P (T1, . . . , T`) be a random variable determined by ` trials
T1, . . . , T`. Suppose that P is c-Lipschitz, i.e. changing the value of one
coordinate in P changes the value of P by at most c. Then we have

Prob(|P − E(P )| ≥ t) ≤ e
−t2

`c2 .

Each of our random variables can be seen as a function depending on the
outcome of some trials: these trials are simply given by choosing one colour
or by conducting a coin flip. We have the following basic facts (the proofs are
omitted):

Basic Fact I: The random variable Ci is α∗-Lipschitz.

Basic Fact II: The random variable xi,u,v is α2
∗-Lipschitz.

Lemma 3.2 • E(Ci(v)) = Ci−1(v);

• E(xi,u,v) = xi−1,u,v.

Lemma 3.3 • Prob(|Ci(v) − E(Ci(v))| ≥ 1

∆
1
15

) ≤ ∆−100;

• Prob(|xi,u,v − E(xi,u,v)| ≥
1

`1∆
1
15

) ≤ ∆−100.

Proof.

• Apply Lemma 3.1 to Ci, we have

Prob(|Ci(v) − E(Ci(v))| ≥
1

∆
1
15

)) ≤ e
−∆

−2
15

2`1∆
−2× 49

50 .

We have `1 = 1000∆/ log(∆) and so

Prob(|Ci(v) − E(Ci(v))| ≥
1

∆
1
15

)) ≤ e−
log(∆)
1000

∆
48
50−

2
15 ≤ ∆−100.

for ∆ large enough.



• Apply Lemma 3.1 to xi,u,v, we have

Prob(|xi,u,v − E(xi,u,v)| ≥
1

`1∆
1
15

) ≤ e
−`

−2
1

∆
−2
15

`1α4
∗ .

P rob(|xi,u,v − E(xi,u,v)| ≥
1

`1∆
1
15

) ≤
1

e`31.(∆
−49
50 )4.∆

2
15

.

= ∆
− log(∆)2.∆

47
50

106 ≤ ∆−100

for ∆ large enough.

2

Concentration results II: Bounding xi,v and di,c(v)

We prove here how to bound xi,v, the same method applies for di,c(v)
(actually for

∑

u∈NGi−1,c
(v) ti,u which bounds di,c(v)).

Let us introduce the binary variables bi(u, c) as follows:

• bi(u, c) = 1 if the colour c is chosen for u (so with probability αpi−1(u, c) we
have bi(u, c) = 1),

• bi(u, c) = 0 otherwise.

We first obtain a polynomial upper bound for the random variable ti,u in
terms of the binary variables bi(u, c). The first observation is that ti,u = 1 if
one of the following three cases arise:

(i) No colour is chosen for u: the random variable bi(u, c) represents the
generation of colour c for u. It is then clear that the contribution of this
case to ti,u is at most

∏

c(1 − bi(u, c)).

(ii) All the colours generated for u appear among the colours generated for
some neighbours: in this case, for each generated colour c, one of the
neighbours of u should also have c among its generated colours. The
contribution of c is bounded by bi(u, c) (for generating c at u) times
∑

w∈NGi−1,c
(u) bi(w, c) (for generating c at one of the neighbours). So the

total contribution is at most
∑

c∈Li−1(u)

bi(u, c)(
∑

w∈NGi−1,c
(u)

bi(w, c)).

(iii) The colour c generated for u is forbidden, i.e. c ∈ Fi−1(u): the contribu-
tion of this case to ti,u is at most

∑

c∈Fi−1(u) bi(u, c).



This finally provides us with the following general upper bound

ti,u ≤
∏

c

(1 − bi(u, c)) +
∑

c∈Li−1(u)

bi(u, c)(
∑

w∈NGi−1,c
(u)

bi(w, c)) +
∑

c∈Fi−1(u)

bi(u, c).

Which implies that

xi,v ≤
∑

u∈NGi−1
(v)

xi,u,v[
∏

c

(1 − bi(u, c)) +
∑

c; {u,w}∈E(Gi−1,c)

bi(u, c)bi(w, c)].

+
∑

c∈Fi−1(u)

xi,u,vbi(u, c).

On the other hand, using the fact that each bi(u, c) is a binary random
variable, we have

∏

c

(1 − bi(u, c)) ≤ 1 −
∑

c

bi(u, c) +
∑

c1,c2

bi(u, c1)bi(u, c2).

Which implies that we have

xi,v ≤
∑

u∈N(v)

xi,u,v −
∑

c

xi,v,ubi(u, c) +
∑

u∈N(v);c1 ,c2

xi,v,ubi(u, c1)bi(u, c2)+

∑

c; w∈NGi−1,c
(u)

xi,v,ubi(u, c)bi(w, c) +
∑

c∈Fi−1(u)

xi,v,ubi(u, c).

= A0 − A1 + A2 + A3 + A4

We first calculate the expectation of the terms in the right hand side:

E(
∑

u

xi,u,v) ∼
∑

xi−1,u,v = xi−1,v.

Now using the concentration results for Ci and xi,u,v, we obtain

E(
∑

c

xi,v,ubi(u, c)) ∼ xi−1,vαCi(u) ∼ αxi−1,v.

E(
∑

u;c1,c2

xi,v,ubi(u, c1)bi(u, c2)) ≤ xi−1,v`
2
1α

2α2
∗.

but we have `2
1αα2

∗ = ( ∆
log(∆)

)2 × ∆
−1
20 × ∆−2× 49

50 = o(1), and so

E(
∑

u;c1,c2

xi,v,ubi(u, c1)bi(u, c2)) = o(αxi−1,v).

For the last term we have

E(
∑

c∈Fi−1(u)

xi,v,ubi(u, c)) ≤ xi−1,vαα∗|Fi−1(u)|.



As we suppose that the properties P(j) are verified for all j ≤ i, a similar
method we used to obtain Equation 4 can be engaged to show that

|Fi−1(u)| ≤
∆

49
50

4
= α−1

∗ /4.

and so

E(
∑

c∈Fi−1(u)

xi,v,ubi(u, c)) ≤ αxi−1,v/4.

Putting all these inequalities together, if we can ensure that Ai ∼ E(Ai)
with a high positive probability (≥ 1 − ∆−100), then we should have

xi,v ≤ E(A0 − A1 + A2 + A3 + A4) ≤ (1 −
α

2
)xi−1,v.

which proves the desired claim of P(i).

Let us now prove that with high probability (at least 1 − ∆−100) we have
|Ai − E(Ai)| = o(αxi−1,v). To this end, we need the following lemma which is
known as polynomial method; for more details see the first chapter of [10]:

Lemma 3.4 Let P = P (X1, X2, . . . , Xn) be a polynomial in n variables and
of degree k, such that every coefficient of P is non-negative. Let b1, b2 . . . , bn

be n binary random variables. For d ∈ N define

E≥d(P (b1, . . . , bn)) = max
(d1,...,dn):

P

di≥d
E((

∂

∂X1
)d1 . . . (

∂

∂Xn

)dn(P )(b1, . . . , bn)).

There exists a constant Ck, depending only on k, such that we have

Prob[|P (b1, . . . , bn) − E(P (b1, . . . , bn))| ≥ Ckλ
k

√

E(P )E≥1(P )] = O(e−λ).

In order to apply the above lemma, we show that the expected value of all
the partial derivatives of Ai’s is of order O(1).

(i) E( ∂A1

∂bi(u,c)
) = E(xi,u,v) = O( 1

`1
);

(ii) E( ∂A2

∂bi(u,c)
) = E(

∑

w∈NGi−1,c(u)
xi,u,vbi(u, c′)) ∼ xi−1,u,vCi(u) = O( 1

`1
);

(iii) E( ∂2A2

∂bi(u,c)∂bi(u′,c′)
) ≤ xi−1,u,v;

(iv) E( ∂A3

∂bi(u,c)
) = E(

∑

w∈NGi−1,c(u)
xi,u,vbi(w, c)) ≤ 1

`1
∆αα∗ = O( 1

`1
);

(v) E( ∂2A3

∂bi(u,c)∂bi(u′,c′)
) ≤ xi−1,u,v;

(vi) E( ∂A4

∂bi(u,c)
) ≤ E(xi,u,v) ≤

1
`1

.

From the above estimates it is clear that E1(xi,v) = O(1). Now applying the
inequality of Lemma 3.4 we have:



Lemma 3.5 For k = deg(Ai) (so k = 1 or 2 depending on i), we have

Prob(|Ai − E(Ai)| ≥ ck(log(∆))2k
√

E(Ai)) ≤ e−(log(∆))2 ≤ ∆−100.

for ∆ big enough

The proof of the last condition in P(i) concerning the entropies is omitted.

Having all these concentration results 3.3 and 3.5, the only remaining point
is to put them all together, to prove that with positive probability all the ran-
dom variables of Lemma 3.3 and 3.5, will remain close to their expectations.
To prove this, it is sufficient to see that the dependency graph of all the bad
events, i.e. the events defined by deviation of our random variables from their
expected values, has degree strictly less than ∆10 (the degree of original graph
is at most ∆2, each two events at distance at least 3 are independent, a simple
calculations show that the degree is bounded by ∆10). As the probability of
each of these bad events is at most ∆−100, applying the Lovász Local Lemma,
we conclude that with positive probability all these bad events do not happen,
and so at iteration i, the property P(i) is verified.

The Lovász Local Lemma (LLL): Consider a set E of (typically bad)
events such that for each event A ∈ E

(i) P (A) ≤ p < 1;

(ii) A is mutually independent of a set of all but at most d of the other events
in E .

If 4pd ≤ 1 then with positive probability, non of the events in E occur.
Remark that in over application of the LLL, p = ∆−100 and d ≤ ∆−10, so for
large enough ∆ we have 4pd ≤ 1.
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