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Abstract. We prove that the Chow ring of any simplicial fan is isomorphic to the middle
degree part of the tropical cohomology ring of its canonical compactification. Using this
result, we prove a tropical analogue of Kleiman’s criterion of ampleness for fans.

In the case of tropical fans that are homology manifolds, we obtain an isomorphism
between the Chow ring of the fan and the entire tropical cohomology of the canonical com-
pactification. When applied to matroids, this provides a new representation of the Chow
ring of a matroid as the cohomology ring of a projective tropical manifold.
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1. Introduction

Feichtner and Yuzvinsky provide in [FY04] a description of the Chow ring of a wonderful
compactification of the complement of an arrangement of hyperplanes in terms of the Chow
ring of the toric variety that underlines the compactification. Over the field of complex num-
bers, combined with the work of De Concini and Procesi [DP95], this leads to a combinatorial
description of the cohomology of the wonderful compactification. Our aim in this paper is to
prove a very general form of these results in the framework of tropical geometry. This plays a
key role in our companion work which develops a Hodge theory for Kähler tropical varieties.

1.1. Overview of the main results. Let N be a free abelian group of finite rank and denote
by NR the vector space generated by N . Let Σ be a simplicial fan in NR rational with respect
to N , and denote by Σ its canonical compactification obtained by taking the closure of Σ in
the tropical toric variety TPΣ. Denote by A•(Σ,Z) and A•(Σ,Q) the Chow ring of Σ with
integral and rational coefficients, and by H•,•(Σ,Z) and H•,•(Σ,Q) the tropical cohomology
groups of Σ with integral and rational coefficients, respectively. We refer to Section 2 for a
reminder of these definitions.

Our first theorem states as follows.

Theorem 1.1 (Feichtner-Yuzvinsky for fans). For any integer p, there is an isomorphism

Ψ: Hp,p(Σ,Q) ∼−−→ Ap(Σ,Q).
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They induce together a ring morphism H•,•(Σ,Q) → A•(Σ,Q) by mapping Hp,q(Σ,Q) to zero
in the bidegree p ̸= q. Moreover, Hp,q(Σ,Q) is trivial for p < q and for p > q = 0.

If Σ is unimodular and saturated, these statements hold with Z-coefficients.

We refer to Section 2.1 for the definition of saturation property. The proof given in Section 4
provides an explicit description of the application Ψ. In Sections 8.1 and 8.2 we will provide
examples which show that both the saturation and unimodularity assumptions are in general
needed when dealing with integral cohomology.

The above result has its source of motivation in the recent development of combinatorial
Hodge theory [AHK18; Ard22; Bak18; Huh22; Oko22]. To any matroid m is associated a
unimodular fan Σm called the Bergman fan of the matroid [AK06]. The Chow ring of m is
by definition the Chow ring of the corresponding Bergman fan. It behaves as the cohomology
ring of a smooth projective complex variety, with remarkable properties, although, in general,
when the matroid is non-realizable, there is no projective variety associated to m.

From Theorem 1.1, we deduce the following identification of the Chow ring of a matroid as
the cohomology of a projective tropical manifold.

Theorem 1.2. Let Σm be the Bergman fan of a matroid m and denote by Σm its canonical
compactification. Denote by A•(m,Z) the Chow ring of m with integral coefficients. We have
an isomorphism of rings A•(m,Z) ∼−→ H•,•(Σm,Z).

We will deduce the above theorem as a special case of the following more general result. A
tropical orientation of a rational fan Σ of pure dimension d is an integer valued map

ω : Σd → Z ∖ {0}
that verifies the so-called balancing condition. Namely, for any cone τ in Σ of codimension
one, denoting by Nτ the lattice of full rank in the vector subspace of NR generated by τ , we
have the vanishing of the sum ∑

σ⊃τ

ω(σ)eτσ = 0

in the quotient lattice N
/
Nτ . Here, the sum runs over facets σ of Σ that contain τ , and eτσ is

the generator of the quotient (σ ∩N)
/
(τ ∩N) ≃ Z⩾0.

A tropical fan in NR is a pair (Σ, ωΣ) consisting of a pure dimensional rational fan Σ
and a tropical orientation ωΣ as above. The tropical orientation leads to the definition of a
fundamental class. We say that a tropical fan is a tropical homology manifold if the tropical
cohomology with rational coefficients of any open subset of |Σ| with induced orientation verifies
Poincaré duality. This has been thoroughly studied in [Aks23]. If the same holds with integral
coefficients, then we precise that the tropical fan is a tropical homology manifold with integral
coefficients.

The Bergman fan of a matroid m is pure dimensional and has a natural tropical orientation
that gives value one to each facet. It is shown in [JSS19] that any open set in the Bergman
fan of a matroid verifies Poincaré duality, that is, Σm is a tropical homology manifold.

Theorem 1.2 is a special case of the following more general result.

Theorem 1.3. Let Σ be a simplicial tropical fan in NR. Suppose that in addition, Σ is a
tropical homology manifold. Then, we get an isomorphism of rings A•(Σ,Q) ∼−→ H•,•(Σ,Q).
In particular, A•(Σ,Q) verifies Poincaré duality.

If Σ is unimodular, saturated, and a tropical homology manifold with integral coefficients,
the statement holds over Z. In this case, A•(Σ,Z) is torsion-free and verifies Poincaré duality.

Combined with [AP23a], these results show that the recently developed Hodge theory for
tropical fans concern the cohomology of special projective tropical varieties, those of the
form Σ. In our companion work [AP20a], these results are used to introduce Kähler tropical
varieties and develop a Hodge theory for them.
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The following dual version of Theorem 1.1 does not use the saturation hypothesis. Denote
by MWp(Σ,Z) the group of integral valued Minkowski weights of dimension p and consider
the cycle class map cl : MWp(Σ,Z) → Hp,p(Σ,Z). We refer to Section 2.9 for the definition.

Theorem 1.4. Let Σ be a unimodular fan in NR. The cycle class map MWp(Σ,Z) →
Hp,p(Σ,Z) is an isomorphism. Moreover, Hp,q(Σ,Z) is trivial in bidegree (p, q) in the case
p < q and p > q = 0.

We note that for rational simplicial fans, the statement of the above theorem with rational
coefficients is a direct consequence of Theorem 1.3 and of the duality between Minkowski
weights and Chow groups, Theorem 2.4.

We get the following corollary.

Theorem 1.5 (Hodge conjecture for compactifications of tropical fans). Let Σ be a unimod-
ular tropical fan which is a tropical homology manifold with integral coefficients. Then, to
each element α in Hp,p(Σ,Z) we can associate a tropical cycle of codimension p whose class
in Hd−p,d−p(Σ,Z) is the Poincaré dual of α. Moreover, for p ̸= q, Hp,q(Σ,Z) is trivial.

The same statements are true with rational coefficients for a simplicial tropical fan Σ which
is a tropical homology manifold.

Using the above results, we formulate a tropical analogue of Kleiman’s criterion of ample-
ness [Kle66]. An element α in A1(Σ,Q) is called ample if it is associated to a conewise linear
function on Σ that is strictly convex around each cone of Σ. We say that a tropical variety
is effective if its underlying tropical orientation gets positive values. We prove the following
numerical characterization of ampleness for fans in Section 7.

Theorem 1.6 (Numerical criterion of ampleness for fans). Let Σ be a rational simplicial fan.
A class α in A1(Σ,Q) is ample if and only if, viewed in H1,1(Σ,Q), has positive pairing with
the class in H1,1(Σ,Q) of any effective tropical curve in Σ.

1.2. An alternative description of the cohomology. The canonical compactification Σ
admits a natural decomposition into hypercubes, see Figure 1. In order to prove Theorem 1.1,
we use this decomposition and establish a new way of computing the cohomology of Σ that
we hope might be of independent interest. We briefly discuss this here.

For each cone σ ∈ Σ, the canonical compactification σ of σ is a subset of Σ. It has the
form of a hypercube of dimension equal to that of σ. Denote by ∞σ the point in σ that is
diagonally opposite to the origin. For non-negative integers p, q, define

(1.1) Cp,q
□

(Σ,Z) :=
⊕
|σ|=q

Fp−q(∞σ,Z)

where Fk(∞σ,Z) is the coefficient group used in the definition of tropical cohomology. It
coincides with tropical cohomology in degree k of the star fan Σσ, see Section 2 for the
definition.

For τ a face of codimension one in σ ∈ Σ, we define a natural map

Fk(∞τ ,Z) −→ Fk−1(∞σ,Z).

Viewing these as boundary maps and combining them together, we obtain for each integer p
a cochain complex

Cp,•
□

(Σ,Z) : · · · −→ Cp,q−1
□

(Σ,Z)
dq−1
□−−−−→ Cp,q

□
(Σ,Z)

dq
□−−−→ Cp,q+1

□
(Σ,Z) −→ · · ·

Theorem 1.7. Let Σ be a unimodular fan. The cohomology of
(
Cp,•

□
(Σ,Z), d□

)
with inte-

gral coefficients is isomorphic to Hp,•(Σ,Z). The same statement holds true with rational
coefficients for simplicial rational fans.
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The proof of the above theorem is based on the homological properties of the fine double
complex pE

•,• introduced in Section 3.
A deeper exploitation of the fine double complex leads to the proof of the following char-

acterization of tropical homology manifolds. We state it for tropical fans.

Theorem 1.8 (Alternate characterization of tropical homology manifolds). A unimodular
tropical fan Σ is a tropical homology manifold with integral coefficients if and only if, for
any face σ ∈ Σ, the cohomology with integral coefficients of Σ

σ verifies Poincaré duality.
Equivalently, if and only if, for each σ ∈ Σ,

• the Chow ring A•(Σσ,Z) of the star fan Σσ verifies Poincaré duality, and
• all the cohomology groups Hp,q(Σ

σ
,Z) for p > q are zero.

The same statements hold true for simplicial tropical fans Σ with rational coefficients.

1.3. Generalization to non-rational simplicial fans. Although we assume for the sake of
simplicity and clarity of the exposition that the fans are rational, it is possible to extend the
set-up to non-rational simplicial fans. We discuss the required adjustments in Section 8.5.

1.4. Applications. The results of this paper play an important role in our companion work.
We briefly discuss them here.

Tropical Hodge theory in the global setting is the subject of our work [AP20a]. Theorems 1.1
and 1.3, combined with Steenbrink-Tropical comparison theorem and tropical Deligne weight
exact sequence, enables us to use Chow rings of tropical fans in the study of the cohomology
of tropical varieties. Using this approach, we introduce Kähler tropical varieties and establish
a Hodge theory for them. Theorem 1.2 connects combinatorial and tropical Hodge theories.

Theorem 1.3 plays as well a crucial role in our joint work with Aksnes and Shaw [AAPS23].
In that paper, we provide a characterization of varieties for which tropicalization remembers
the cohomology. This is motivated in part by the work of Deligne [Del97], in which he gives
a Hodge-theoretic characterization of maximal degenerations of complex algebraic varieties,
and by the recent work by Yang Li [Li20], that connects SYZ conjecture in mirror symmetry
to tropical geometry. In this regard, we develop in [AP23b] a differential calculus on tropical
varieties that combine Chow rings of local tropical fans with real differential forms on the
variety, formulate a tropical analogue of the Monge-Ampère equation, and study its solutions.

1.5. Organization. Section 2 contains preliminary definitions and results. In Section 3, we
introduce the fine double complex and prove Theorem 1.7. In Section 4, we prove Theo-
rems 1.1, 1.2, 1.3, 1.4 and 1.5. The assertion that the morphism Ψ in Theorem 1.1 is a
morphism of rings is more subtle and is proved in Section 5. Theorem 1.8 is proved in Sec-
tion 6, and Kleiman’s criterion is established in Section 7. Concluding Section 8 contains
complementary results and examples related to the content of the paper.

Convention. In the following, whenever there is a choice, we will present the proofs of the
results stated in the theorems for the case of integer coefficients, assuming that the required
conditions, if any, are satisfied. The proofs with rational coefficients (without those conditions)
are similar. Moreover, when the coefficient is not explicitly given, it means that we work with
integral coefficients.

Acknowledgments. We thank Pierre-Louis Blayac for his help in proving Theorem 1.6.

2. Preliminaries

In this section we collect basic notations and definitions that are used in the paper.
Throughout, N will be a free Z-module of finite rank and M = N⋆ = Hom(N,Z) will be

the dual of N . We denote by NR and MR = N ⋆
R the corresponding real vector spaces.

All the cones appearing in this paper are strictly convex, i.e., they do not contain any line.
For a rational polyhedral cone σ in NR, we use the notation Nσ,R to denote the real vector
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subspace of NR generated by elements of σ and set N σ
R := NR

/
Nσ,R. Since σ is rational, we get

natural lattices of full rank Nσ ⊂ Nσ,R and N σ ⊂ N σ
R .

For the ease of reading, we adopt the following convention. We use σ (or any other face
of Σ) as a superscript where referring to the quotient of some space by Nσ,R or to the elements
related to this quotient. In contrast, we use σ as a subscript for subspaces of Nσ,R or for
elements associated to these subspaces.

If τ ⊆ σ are faces of Σ, we denote by πτ≺σ both the projection maps N τ → N σ and N τ
R → N σ

R .
We denote by T := R∪ {∞} the extended real line with the topology induced by that of R

and a basis of open neighborhoods of infinity given by intervals (a,∞] for a ∈ R. Extending
the addition of R to T by setting ∞+ a = ∞ for all a ∈ T, endows T with the structure of a
topological monoid called the monoid of tropical numbers. We denote by T+ := R+ ∪{∞} the
submonoid of non-negative tropical numbers with the induced topology. Both monoids admit
a natural scalar multiplication by non-negative real numbers (setting 0 · ∞ = 0). Moreover,
the multiplication map is continuous. As such, T and T+ can be seen as modules over the
semiring R+. A polyhedral cone σ in NR is another example of a module over R+.

For any natural number p, we set [p] := {1, . . . , p}.

2.1. Fans. Let Σ be a fan of dimension d in NR. The dimension of a cone σ in Σ is denoted by
|σ|. The set of k-dimensional cones of Σ is denoted by Σk, and elements of Σ1 are called rays.
We denote by 0 the cone {0}. Any k-dimensional cone σ in Σ is determined by its set of rays
in Σ1. The support of Σ denoted |Σ| is the closed subset of NR obtained by taking the union
of the cones in Σ, we call it a fanfold. A facet of Σ is a cone that is maximal for the inclusion.
Σ is pure dimensional if all its facets have the same dimension. The k-skeleton of Σ is by
definition the subfan of Σ consisting of all the cones of dimension at most k, and we denote
it by Σ(k). We say that Σ is rational if all of its cones are rational. Σ is called simplicial if
each cone in Σ is generated by as many rays as its dimension. It is called unimodular if it is
rational, simplicial, and the primitive vectors of the rays of any cone in Σ are part of a basis
for the entire lattice N .

The set of linear functions on Σ is defined as the restriction to |Σ| of linear functions on
NR; such a linear function is defined by an element of MR. In the case Σ is rational, a linear
function on Σ is called integral if it is defined by an element of M .

Let f : |Σ| → R be a continuous function. We say that f is conewise linear on Σ if on each
face σ of Σ, the restriction f |σ of f to σ is linear. In such a case, we simply write f : Σ → R,
and denote by fσ the linear form on Nσ,R that coincides with f |σ on σ. If the linear forms fσ
are all integral, then we say f is conewise integral linear. (From an algebraic geometric point
of view, these are meromorphic functions on Σ.)

A rational fan Σ is called saturated at σ in Σ if the set of integral linear functions on Σσ

coincides with the set of linear functions on Σσ that are conewise integral. This is equivalent
to requiring the lattice generated by the points in |Σσ| ∩ N σ be saturated in the lattice N σ.
We say Σ is saturated if it is saturated at each of its faces.

A conewise linear function f : Σ → R is called convex, resp. strictly convex, if for each face
σ of Σ, there exists a linear function λ on Σ such that f−λ vanishes on σ and is non-negative,
resp. strictly positive, on η ∖ σ for any cone η in Σ that contains σ.

A fan Σ is called quasi-projective if it admits a strictly convex conewise linear function.
When Σ is rational, it is quasi-projective if and only if the toric variety PΣ is quasi-projective.

The star fan Σσ refers to the fan in N σ
R = NR

/
Nσ,R induced by the projection of the cones

η in Σ that contain σ as a face, for the projection map NR → N σ
R .

Convention. We endow the fan Σ with the partial order ≺ given by the inclusion of cones in
Σ: we write τ ≺ σ if τ ⊆ σ. We say σ covers τ and write τ ≺·σ if τ ≺ σ and |τ | = |σ|−1. The
meet operation ∧ is defined as follows. For two cones σ and δ of Σ, we set σ ∧ δ := σ ∩ δ. The
set of cones in Σ that contain both σ and δ is either empty or has a minimal element η ∈ Σ.



6 OMID AMINI AND MATTHIEU PIQUEREZ

In the latter case, we say that η is the join of σ and δ and denote it by σ ∨ δ := η. We write
σ ∼ δ if σ ∨ δ exists and σ ∧ δ = 0 holds.

ν

σ

η

γ

τ

□0
η

∞η

□τ
σ

νγ∞

Figure 1. A fan on the left and its canonical compactification on the right.
The cone σ is two-dimensional and has rays τ and γ. Two faces □τ

σ and □0
η are

depicted in red and gray, respectively. The ray νγ∞ depicted in bold red is based
at the point ∞γ and excludes the point ∞ν , depicted in white.

2.2. Canonical compactification. We briefly discuss canonical compactifications of fans
and their combinatorics. More details can be found in [AP20a; OR11].

Let Σ be a fan in NR. For any cone σ, denote by σ∨ the dual cone defined by

σ∨ :=
{
m ∈ MR

∣∣ ⟨m, a⟩ ⩾ 0 for all a ∈ σ
}
.

The canonical compactification σ of σ is given by HomR+
(σ∨,T+), i.e., by the set of mor-

phisms σ∨ → T+ in the category of R+-modules. In this definition, we can naturally identify
σ with the corresponding subset of σ. There is a natural topology on σ that makes it a com-
pact topological space whose induced topology on σ coincides with the Euclidean one. For an
inclusion of cones τ ⊆ σ, we get an inclusion map τ ⊆ σ that identifies τ as the topological
closure of τ in σ.

The canonical compactification Σ is defined as the union of σ, σ ∈ Σ, where for an inclusion
of cones τ ⊆ σ in Σ, we identify τ with the corresponding subspace of σ. An example of a
canonical compactification is depicted in Figure 1. The topology of Σ is the induced quotient
topology. Each extended cone σ naturally embeds as a subspace of Σ.

There is a special point ∞σ in σ defined by the map σ∨ → T that vanishes on the orthogonal
space σ⊥ := {m ∈ MR | ⟨m, a⟩ = 0 for all a ∈ σ} and takes value ∞ everywhere else. Note
that for the cone 0, we have ∞0 = 0.

The compactification Σ naturally lives in the tropical toric variety TPΣ defined as follows.
For σ ∈ Σ, let σ̃ := HomR+

(σ∨,T) and note that, since HomR+
(σ∨,R) ≃ NR, this is a partial

compactification of NR. For a pair of elements τ ⊆ σ in Σ, we get an inclusion τ̃ ⊆ σ̃. Gluing
the spaces σ̃ along these inclusions gives TPΣ.

We set N σ
∞,R := NR + ∞σ ⊆ σ̃. In this notation, we have N 0

∞,R = NR. More generally, we
have an isomorphism N σ

∞,R ≃ N σ
R .

The tropical toric variety TPΣ is naturally stratified as the disjoint union of tropical torus
orbits N σ

∞,R ≃ N σ
R , σ ∈ Σ. The natural inclusion of σ into σ̃ gives an embedding Σ ⊆ TPΣ that

identifies Σ as the closure of Σ in TPΣ.
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2.3. Stratification of Σ. Consider a cone σ ∈ Σ and a face τ of σ. Let στ
∞ be the subset of

σ defined by
στ
∞ := {∞τ + x | x ∈ σ} = σ ∩N τ

∞,R.

Under the natural isomorphism N τ
∞,R ≃ N τ

R, στ
∞ becomes isomorphic to the projection of the

cone σ into the linear space N τ
R ≃ N τ

∞,R. We denote by σ̊τ
∞ the relative interior of στ

∞ . In order
to simplify the notation, in what follows we will denote the closure στ

∞ of στ
∞ by □τ

σ. This is
justified by observing that when Σ is simplicial (assumption we make in the paper), στ

∞ is
isomorphic to the hypercube Tk

+, k = |σ| − |τ |.
Note that the origin of στ

∞ is the point ∞τ . By an abuse of the notation, we use ∞τ for the
cone τ τ

∞ = {∞τ}.
The following proposition gives a precise description of how these different sets are posi-

tioned together in the canonical compactification.

Proposition 2.1. Let Σ be a fan in NR.
• The canonical compactification Σ is the disjoint union of (open) cones σ̊τ

∞ for pairs of
faces τ ≺ σ. The linear span of the cone στ

∞ is the real vector space N τ
∞,σ,R, i.e., the

projection of Nσ,R into N τ
∞,R.

• For any pair of faces τ ≺ σ, the closure □τ
σ of στ

∞ in Σ is the disjoint union of all the
(open) cones η̊δ

∞ with τ ≺ δ ≺ η ≺ σ.

Proof. The proof is a consequence of the tropical orbit-stratum correspondence theorem in
the tropical toric variety TPΣ and the observation we made previously that Σ is the closure
of Σ in TPΣ. We omit the details. □

The cones σ̊τ
∞ form the open faces of what we call the conical stratification of Σ. We refer

to the topological closures □τ
σ = στ

∞ as the closed faces, or simply, faces of Σ.
The closed faces □τ

σ, for τ ≺ σ a pair of faces of Σ, endow Σ with an extended polyhedral
structure, see [JSS19; IKMZ19; AP20a] for the definition.

We extend to Σ the notations introduced for simplicial complexes. In particular, δ ∈ Σ

means that δ is a face of Σ, |Σ| denotes the support of Σ, and Σk is the set of faces of
dimension k in Σ.

The sedentarity of a face δ = □τ
σ denoted by sed(δ) is by definition the face τ of Σ. By an

abuse of the terminology and remembering only the dimension of sed(δ), we sometimes say
that δ has sedentarity k with k the dimension of τ .

The tangent space to □τ
σ is identified with N τ

∞,σ,R, and contains full rank lattice N τ
∞,σ. For an

inclusion of faces δ′ = □τ ′

σ′ ≺ δ = □τ
σ, we have τ ≺ τ ′ ≺ σ′ ≺ σ.

2.4. Unit normal vectors and canonical multivectors and forms. Let Σ be a rational
fan of dimension d. Let σ be a cone of Σ and let τ be a face of codimension one in σ. Then,
Nτ,R cuts Nσ,R into two closed half-spaces only one of which contains σ. Denote this half-
space by Hσ. By a unit normal vector to τ in σ we mean any vector v of Nσ ∩Hσ such that
Nτ + Zv = Nσ. We usually denote such an element by nσ/τ and note that it induces a well-
defined generator of N τ

σ = Nσ

/
Nτ that we denote by eτσ. We naturally extend the definition

to similar pair of faces in Σ having the same sedentarity. In the case σ is a ray (and τ is a
point of the same sedentarity as σ), we also use the notation eσ instead of nσ/τ .

On each face σ of Σ, we fix a generator of
∧|σ|Nσ denoted by νσ and call it the canonical

multivector of σ (up to a sign, this is unique). The element ϖσ ∈
∧|σ|N ⋆

σ that takes value one
on νσ is called the canonical form of σ. We assume that ν0 = 1 and that νρ = eρ for any ray ρ.

We extend the above definitions to Σ by choosing an element ντ
σ ∈

∧|σ|−|τ |N τ
∞,σ ≃

∧|σ|−|τ |N τ
σ

for each polyhedron □τ
σ, and setting ϖτ

σ := ντ ⋆
σ . For simplicial Σ, there is a natural choice for

extending the cellular orientation of Σ to Σ. If τ ≺ σ is a pair of cones, there exists a unique
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minimal τ ′ such that σ = τ ∨ τ ′. Then, we set ντ
σ to be the image of ντ ′ via the projection

N → N τ
∞,R ≃ N τ .

2.5. Orientation and sign function. The choice of canonical multivectors from the previous
section associate an orientation (in the topological sense) to the faces of Σ. In particular, to
any pair of closed faces γ ≺· δ of Σ, we associate a sign denoted sign(γ, δ) as follows.

If both faces have the same sedentarity, then sign(γ, δ) is the sign of ϖδ

(
nδ/γ∧νγ

)
. Otherwise,

there exists a pair of cones τ ′ ≺· τ and a cone σ in Σ such that γ = □τ
σ and δ = □τ ′

σ . Consider
the map πγ≺·δ : N

τ ′

∞,σ → N τ
∞,σ between the two lattices in the tangent spaces of γ and δ (see

Section 2.3). Note that πγ≺·δ is surjective and induces a surjective linear map from
∧•N τ ′

∞,σ to∧•N τ
∞,σ. We choose ν ′ such that πγ≺·δ(ν

′) = νγ. Let eτ
′

τ be the primitive vector of the ray τ τ ′

∞ in
στ ′

∞ . Although, there is a choice for ν ′, the element eτ ′τ ∧ ν ′ is well-defined and does not depend
on this choice. We define sign(γ, δ) as the sign of −ϖδ(e

τ ′

τ ∧ ν ′).

2.6. Chow rings of fans and localization lemma. The Chow ring of a rational simplicial
fan Σ denoted by A•(Σ) is defined by generators and relations as follows. Consider the
polynomial ring Z[xζ ]ζ∈Σ1

with indeterminate variables xζ associated to rays ζ in Σ1. The
ring A•(Σ) is the quotient ring

A•(Σ) := Z[xζ ]ζ∈Σ1

/(
I + J

)
where I is the ideal generated by the products xρ1· · ·xρk , for k ∈ N, such that ρ1, . . . , ρk are
non-comparable rays in Σ, that is, they do not form a cone in Σ, and J is the ideal generated
by the elements of the form ∑

ζ∈Σ1

m(eζ)xζ , m ∈ M := N ⋆,

with eζ the primitive vector of the ray ζ.
The ideal I+J is homogeneous and the Chow ring inherits a graded ring structure. Denoting

by d the dimension of Σ, the graded pieces for degree larger than d vanish (by Theorem 2.2
below), and we can write

A•(Σ) =
d⊕

k=0

Ak(Σ).

We define the Chow ring with rational and real coefficients in a similar way and denote them
by A•(Σ,Q) and A•(Σ,R), respectively. A useful result dealing with the Chow rings is the
localization lemma stated below that provides a reformulation of each graded piece Ak(Σ) of
the Chow ring.

For each cone σ of dimension k in Σ, choose an indeterminate variable xσ and denote
by Zk(Σ) the free abelian group generated by xσ for σ ∈ Σk. Consider the injective map
Zk(Σ) ↪→ Z[xρ | ρ ∈ Σ1] that sends each xσ to the product

∏
ρ xρ over rays ρ of σ. This

induces a map of abelian groups Zk(Σ) → Ak(Σ).
We have the following result proved in [FMSS95, Theorem 1], see [AP23a, Theorem 3.2] for

a combinatorial proof.

Theorem 2.2 (Localization lemma). Notations as above, if Σ is unimodular, the map from
Zk(Σ) to Ak(Σ) is surjective and its kernel is generated by elements of the form

∑
σ∈Σk
τ≺·σ

m(eτσ)xσ

for τ ∈ Σk−1 and m ∈ M τ = (N τ )⋆.
The same statement holds true with rational coefficients for a simplicial rational fan.
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2.7. Tropical homology and cohomology groups. Let Σ be a rational fan. The extended
polyhedral structure on Σ leads to the definition of tropical homology groups and cohomology
groups introduced in [IKMZ19] and further studied in [JSS19; MZ14; JRS18; GS23; AB14;
ARS21; Aks23].

We recall the definition of the multi-tangent and multi-cotangent (integral) spaces Fp

and Fp. We give the definitions for Σ for the face structure given by the closed strata □τ
σ

in the conical stratification of Σ, τ ≺ σ in Σ. This gives a combinatorial complex which
calculates the tropical homology and cohomology groups of Σ. The definitions are naturally
adapted to Σ with face structure given by its cones.

For any face δ = □τ
σ, we set Nδ = N τ

∞,σ ≃ Nσ

/
Nτ . For any non-negative integer p, the

p-th multi-tangent and the p-th multi-cotangent space of Σ at δ, denoted by Fp(δ) and Fp(δ)
respectively, are given by

Fp(δ) :=
∑
η≻δ

sed(η)=τ

∧pNη ⊆
∧pN τ , and Fp(δ) := Fp(δ)

⋆.

For an inclusion of faces γ ≺ δ in Σ, we get maps iδ≻γ : Fp(δ) → Fp(γ) and i∗γ≺δ : F
p(γ) →

Fp(δ) defined as follows. If γ and δ have the same sedentarity, the map iδ≻γ is just an inclusion.
If γ = □τ ′

σ and δ = □τ
σ with τ ≺ τ ′ ≺ σ, then the map iδ≻γ is induced by the projection

N τ
∞ → N τ ′

∞ . In the general case, iδ≻γ is given by the composition of the projection and the
inclusion; the map i∗γ≺δ is the dual of iδ≻γ.

Let X = Σ or Σ, for a fan Σ. For a pair of non-negative integers p, q, define

Cp,q(X) :=
⊕
δ∈X
|δ|=q

δ compact

Fp(δ)

and consider the corresponding complexes

Cp,•(X) : · · · −→ Cp,q+1(X)
∂q+1−−−−→ Cp,q(X)

∂q−−→ Cp,q−1(X) −→ · · ·

where the differential is given by the sum of maps sign(γ, δ) · iδ·≻γ with the signs corresponding
to a chosen cellular orientation on X as explained in Section 2.5.

The tropical homology with integral coefficients of X is defined by

Hp,q(X) := Hq(Cp,•(X)).

Similarly, we have a cochain complex

Cp,•(X) : · · · −→ Cp,q−1(X)
dq−1

−−−−→ Cp,q(X)
dq−−→ Cp,q+1(X) −→ · · ·

where
Cp,q(X) := Cp,q(X)⋆ ≃

⊕
δ∈X
|δ|=q

δ compact

Fp(δ)

and the tropical cohomology with integral coefficients of X is defined by

Hp,q(X) := Hq(Cp,•(X)).

We can also define the compact-dual versions of tropical homology and cohomology by
allowing non-compact faces. These are called Borel-Moore homology and cohomology with
compact support, and are defined as follows.

C
BM

p,q (X) :=
⊕
δ∈X
|δ|=q

Fp(δ) and Cp,q
c (X) :=

⊕
δ∈X
|δ|=q

Fp(δ).
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We get the corresponding (co)chain complexes C
BM

p,•(X) and Cp,•
c (X), and the Borel-Moore

tropical homology and the tropical cohomology with compact support with integral coefficients
are respectively

H
BM

p,q (X) := Hq(C
BM

p,•(X)) and Hp,q
c (X) := Hq(Cp,•

c (X)).

If X is compact, then both notions of homology and both notions of cohomology coincide.
Similarly, we define homology and cohomology groups with rational coefficients.
Homology and cohomology in this paper refer to the tropical ones, so we usually omit the

mention of the word tropical. In our definition of tropical homology and cohomology, we
adapted a cellular version. As in the classical setting, there exist other ways of computing the
same groups: for instance using either of singular, cubical, or sheaf cohomologies. We note in
particular that the homology and cohomology only depends on the support.

We need the following result on the cohomology with compact support of Tk, see [JSS19]
for the proof.

Proposition 2.3. The cohomology Hp,q
c (Tk) with compact support of Tk is trivial unless

p = q = k, and we have Hp,q
c (Tk) ≃ Z.

The collection of coefficient sheaves and cosheaves come with contraction maps defined as
follows.

Let σ ∈ Σ and consider an element ν ∈ Fk(σ). Given an element α ∈ Fp(σ), we denote by
κν(α) the element of Fp−k(σ) that on each element ν ′ ∈ Fp−k(σ) takes value α(ν ∧ ν ′). The
map κν : F

p(σ) → Fp−k(σ) is linear. We extend the definition naturally to all faces δ of Σ and
obtain maps κν : F

p(δ) → Fp−k(δ) for any element ν ∈ Fk(δ). We call κν(α) the contraction
of α by ν, and refer to κν as the contraction map defined by ν. Dually, for α ∈ Fk(σ), we get
contraction maps κα : Fp(σ) → Fp−k(σ).

These contraction maps lead to the definition of cap product between homology and coho-
mology groups, see next section for cap product with the fundamental class.

2.8. The case of tropical fans. A tropical orientation of a rational fan Σ of pure dimension
d is an integer valued map

ω : Σd → Z ∖ {0}
that verifies the balancing condition. This means that for any cone τ in Σ of codimension one,
the sum ∑

σ·≻τ

ω(σ)eτσ

vanishes in the quotient lattice N
/
Nτ .

A tropical fan in N is a pair (Σ, ωΣ) consisting of a pure dimensional rational fan Σ and a
tropical orientation ωΣ as above. We will call tropical fanfold the support of any tropical fan
(Σ, ωΣ) endowed with the tropical orientation induced by ωΣ on the set of regular points (those
points having an open neighborhood isomorphic to an open subset of a real vector space).

In the case of a tropical fan Σ, the balancing condition implies the existence of a fundamental
class [Σ] ∈ H

BM

d,d(Σ) defined using canonical multivectors from Section 2.4. The class [Σ] is
represented by the canonical element νΣ ∈ C

BM

d,d given by

νΣ :=
(
ωΣ(η)νη

)
η∈Σd

∈
⊕
η∈Σd

∧dNη.

Cap product with the fundamental class induces a map ⌢ [Σ] : Hp,q(Σ) → H
BM

d−p,d−q(Σ)

for each p, q ∈ {0, . . . , d}. We say that Σ satisfies tropical Poincaré duality with integral
coefficients if these maps are all isomorphisms for all p and q. A tropical fanfold |Σ| is called
a tropical homology manifold if any open subset U of |Σ| satisfies tropical Poincaré duality,
i.e., cap product induces an isomorphism between the tropical cohomology and the tropical
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Borel-Moore homology of U (see [JSS19; JRS18] for details). Equivalently, a tropical fanfold
|Σ| is a tropical homology manifold if any star fan Σσ of Σ verifies tropical Poincaré duality.

Note that Hp,q(Σ) is trivial for q ̸= 0, and for q = 0, we have Hp,q(Σ) = Fp(0). Cap
product with fundamental class is described using contraction maps defined in the previous
section. In the case q = 0, it is the map

Fk(0) → H
BM

d−k,d(Σ)

defined as follows. Consider the fundamental class [Σ] ∈ H
BM

d,d(Σ). The coefficient of a facet
σ ∈ Σd in [Σ] is given by ω(σ)νσ. Given an element α ∈ Fk(0), the corresponding element in
H

BM

d−k,d(Σ) has coefficient at the facet σ ∈ Σd given by κα(ω(σ)νσ). Poincaré duality for Σ is
the statement that these maps are all isomorphisms. Note that, dually, we get a map

Hd−k,d
c (Σ) → Fk(0).

2.9. Minkowski weights. Let Σ be a rational fan in N . A Minkowski weight of dimension p
on Σ with coefficient in Z is a map w : Σp → Z that verifies the balancing condition, namely,
that

∀ τ ∈ Σp−1,
∑
σ·≻τ

w(σ)eτσ = 0 ∈ N τ .

We denote by MWp(Σ) the set of all Minkowski weights of dimension p on Σ with integral
coefficients. Addition of weights cell by cell turns MWp(Σ) into a group.

Replacing Z with Q, we get the set of Minkowski weights with rational coefficients. It
coincides with the vector space generated by MWp(Σ), and is denoted by MWp(Σ,Q).

The support of a Minkowski weight w of dimension p is the set of σ ∈ Σp with w(σ) ̸= 0.
Given a Minkowski weight w of dimension p, we consider its support and its closure in Σ

which is a tropical cycle of dimension p. Taking the corresponding homology class in Hp,p(Σ)

leads to the cycle class map cl : MWp(X) → Hp,p(Σ), see for example [AP20b; MZ14; Sha11;
JRS18; GS21]. As a consequence of the localization lemma, we have the following duality
between Minkowski weights and Chow groups [AHK18; AP23a].

Theorem 2.4. Let Σ be a unimodular fan. There is a pairing

Ak(Σ)⊗MWk(Σ) → Z
xσ , w 7→ w(σ) ∀ σ ∈ Σk and w ∈ MWk(Σ).

This induces an isomorphism

MWk(Σ) ≃ Ak(Σ)∗.

With rational coefficients, the same statement holds true for simplicial rational fans.

Note that in general Ak(Σ) can have torsion, and the pairing in the theorem is not necessarily
perfect.

3. The fine double complex and proof of Theorem 1.7

We start with the proof of Theorem 1.7. Following our convention, we give the proof of
the statement assuming Σ is a unimodular fan in NR, working with integral coefficients. The
proof for simplicial rational fans with rational coefficients will be similar.

We fix a non-negative integer p.
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3.1. The fine double complex. The tropical cochain complex Cp,•(Σ) given in Section 2.7 is
the total complex of a double complex. Namely, for each face □τ

σ = στ
∞ of Σ, we can remember

both numbers |σ| and |τ |, instead of the grading by dimension of the face, |σ| − |τ |, that
resulted in the cochain complex Cp,•(Σ). Unfolding in this way Cp,•(Σ) leads to the double
complex

pE
a,b :=

⊕
τ≺σ faces of Σ

|σ|=a
|τ |=−b

Fp(□τ
σ).

Differentials pE
a,b → pE

a+1,b and pE
a,b → pE

a,b+1 are given by maps between the coefficient
groups Fp of faces of Σ induced by the inclusions of faces □τ

σ ↪→ □τ
η with σ ≺· η, for the first

differential, and inclusions of faces □τ
σ ↪→ □γ

σ for γ ≺· τ , for the second, respectively. We have

Cp,•(Σ) = Tot•(pE
•,•).

In order to prove Theorem 1.7, we calculate the cohomology of Cp,•(Σ) by using the spectral
sequence associated to the filtration given by the columns of pE

•,•. (The spectral sequence
associated to the filtration by the rows will be used in the proof of Theorem 1.8 in Section 6.)

We denote by ↓
pE

•,•
0 the 0-th page of this spectral sequence which has abutment

(3.1) ↓
pE

•,• =⇒ Hp,•(Σ).

3.2. Computation of the first page. The proof of Theorem 1.7 is based on the following
result. For non-negative integers p, q, define

Cp,q
□

(Σ) :=
⊕
σ∈Σ
|σ|=q

Fp−q(∞σ),

with Fk(∞σ) the coefficient group used in Section 2 in the definition of tropical cohomology.
Here, and in what follows, by slight abuse of notation, we use ∞σ when referring to the face
σσ
∞ = {∞σ}.

Denote by ↓
pE

•,•
1 the first page of the spectral sequence.

Proposition 3.1. Notations as above, we have

↓
pE

a,b
1 =

{
Cp,a

□
(Σ) for b = 0,

0 otherwise.

The differential on the first page for b = 0 coincides with the differential d•
□

of Cp,•
□

(Σ).

In order to prove this proposition, we decompose ↓
pE

•,•
1 to a direct sum of subcomplexes, as

follows. Fix an integer a. The a-th column in zeroth page ↓
pE

a,•
0 of the spectral sequence is

↓
pE

a,•
0 : · · · −→

⊕
τ≺σ faces of Σ

|σ|=a
|τ |=−b+1

Fp(□τ
σ) −→

⊕
τ≺σ faces of Σ

|σ|=a
|τ |=−b

Fp(□τ
σ) −→

⊕
τ≺σ faces of Σ

|σ|=a
|τ |=−b−1

Fp(□τ
σ) −→ · · ·

We decompose this complex as a direct sum of complexes ↓
pE

σ,•
0 associated to each face σ ∈ Σa

↓
pE

σ,•
0 : · · · −→

⊕
τ≺σ

|τ |=−b+1

Fp(□τ
σ) −→

⊕
τ≺σ

|τ |=−b

Fp(□τ
σ) −→

⊕
τ≺σ

|τ |=−b−1

Fp(□τ
σ) −→ · · ·

We thus have

(3.2) ↓
pE

a,•
0 =

⊕
σ∈Σa

↓
pE

σ,•
0 .
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Let ↓
pE

σ,•
1 be the cohomology of ↓

pE
σ,•
0 , so that we have

(3.3) ↓
pE

a,•
1 =

⊕
σ∈Σa

↓
pE

σ,•
1 .

These cohomology groups are given by the following lemma.

Lemma 3.2 (Hypercube vanishing lemma). For any face σ of Σ, the cohomology ↓
pE

σ,•
1 of the

complex ↓
pE

σ,•
0 is given by

↓
pE

σ,b
1 ≃

{
Fp−|σ|(∞σ) if b = 0,
0 otherwise.

This isomorphism is moreover induced by the natural map
↓
pE

σ,0
0 ≃ Fp(σ) −→ Fp−|σ|(∞σ),

α 7−→ πσ
∗ (κνσ(α))

with πσ referring to the projection N → N σ, extended to the exterior algebra and restricted to
the corresponding subspaces Fp. The contraction map κν is defined in Section 2.7.

We postpone the proof of this lemma to Section 3.5.

Proof of Proposition 3.1. Using the hypercube vanishing lemma, and in view of the decom-
position given in (3.3), the first page of the spectral sequence is concentrated in the 0-th row
and is given by

↓
pE

a,0
1 =

⊕
σ∈Σ
|σ|=a

Fp−a(∞σ),

which is precisely Cp,a
□

(Σ).
It remains to check that the differentials coincide. Let τ ≺· σ be two faces and denote

by dτ≺·σ : F
p−|τ |(∞τ) → Fp−|σ|(∞σ) the corresponding part of the differential in ↓

pE
•,0. By

Lemma 3.2, we have the following commutative diagram.

Fp(τ) Fp(σ)

Fp−|τ |(∞τ) Fp−|σ|(∞σ)

sign(τ,σ)i∗

πτ
∗◦κντ πσ

∗ ◦κνσ

dτ≺·σ

We infer that the bottom map should be given by π∗ ◦ κeτσ
with π : N τ → N σ, i.e., by the

differential of Cp,•
□

(Σ). This concludes the proof. □

3.3. Proof of Theorem 1.7. This is a direct consequence of Proposition 3.1, which shows
that the spectral sequence degenerates at page two, and, moreover, we have

Hp,q(Σ) ≃ pE
q,0
2 = Hq

(
Cp,•

□
(Σ)

)
. □

3.4. Toric weight filtration on F•. It remains to prove Lemma 3.2. For this, we introduce
a natural filtration on F• called toric weight filtration. We only use here basic properties of
this filtration. We note however that this plays an important role in the development of Hodge
theory for tropical varieties in our work [AP20a], and we refer to loc.cit. for a more through
study.

For each pair of faces τ ≺ σ and each integer k ⩽ p, we have a map

Fp(□τ
σ) −→ Hom

(∧k+1N τ
σ ,F

p−k−1(□τ
σ)
)
≃

∧k+1N τ ⋆
σ ⊗ Fp−k−1(□τ

σ),
α 7−→ (ν 7→ κν(α)).

We denote by WkF
p(□τ

σ) the kernel of this map. We get a filtration

0 = W−1(F
p(□τ

σ)) ⊆ W0(F
p(□τ

σ)) ⊆ · · · ⊆ Wp(F
p(□τ

σ)) = Fp(□τ
σ)
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of Fp(□τ
σ). Let α ∈ WkF

p(□τ
σ) and ν ∈

∧kN τ
σ , and let π : N τ → N σ be the projection. Then,

π∗(κν(α)) ∈ Fp−k(∞σ) is a well-defined element. This way, we obtain a map

WkF
p(□τ

σ) →
∧kN τ ∗

σ ⊗ Fp−k(∞σ).

It is straightforward to check that this map is surjective, and that its kernel is precisely
Wk−1F

p(□τ
σ). We thus get the following description of the graded pieces of the filtration

grk(W•F
p(□τ

σ)) := WkF
p(□τ

σ)
/
Wk−1F

p(□τ
σ) ≃

∧kN τ ⋆
σ ⊗ Fp−k(∞σ).

3.5. Proof of the hypercube vanishing lemma. We calculate the cohomology of ↓
pE

σ,•
0 via

the spectral sequence σ
pF

•,• associated to the filtration W•. By the discussion of the previous
section, the zeroth page of this spectral sequence is given by

σ
pF

a,b
0 =

⊕
τ≺σ

|τ |=−a−b

∧aN τ ⋆
σ ⊗ Fp−a(∞σ).

The a-th row of the first page of this spectral sequence is given by the cohomology of the
cochain complex σ

pF
a,•
1

σ
pF

a,b
1 = Hb(σpF

a,•
1 ).

To compute this cohomology, we notice that

σ
pF

a,•
0 ≃

(
· · · −→

⊕
τ≺σ

|τ |=−a−b+1

∧aN τ ⋆
σ −→

⊕
τ≺σ

|τ |=−a−b

∧aN τ ⋆
σ −→ · · ·

)
⊗ Fp−a(∞σ).

Since σ is unimodular, the cochain complex appearing in the above summand is isomorphic to
the cochain complex Ca,•+|σ|+a

c (T|σ|) for the cohomology with compact support and integral
coefficients of T|σ| for the cell decomposition of T|σ| given by {T,∞}|σ|:

σ
pF

a,•
0 ≃ Ca,•+|σ|+a

c (T|σ|)⊗ Fp−a(∞σ).

(Without the unimodularity assumption on σ, this still holds with rational coefficients.)
We deduce that the first page of the spectral sequence is given by

σ
pF

a,•
1 ≃ Ha,•+|σ|+a

c (T|σ|)⊗ Fp−a(∞σ).

Applying Proposition 2.3, we infer that σ
pF

a,b
1 is trivial unless a = |σ| and b = −|σ|, in which

case it becomes equal to Fp−|σ|(∞σ). Hence, σ
pF

•,• degenerates in page one, and pE
σ,b
1 ≃

Totb(σpF
•,•
1 ) is trivial unless b = 0, in which case, we have pE

σ,0
1 ≃ Fp−|σ|(∞σ). This concludes

the proof of the first part of Lemma 3.2. The second statement in the lemma follows from a
cautious study of the different isomorphisms that we omit. □

4. Proof of Theorems 1.1 to 1.5

We first prove Theorem 1.1, and then deduce Theorems 1.2, 1.3, 1.4 and 1.5. We assume
that Σ is unimodular, and saturated when required, and prove the theorems with integral
coefficient. The proof of the statements in the theorems with rational coefficients will be
similar.

4.1. Vanishing part of Theorem 1.1. By Theorem 1.7, we have

Hp,q(Σ) ≃ Hq(Cp,•
□

(Σ)).

By the definition of the cubical complex (1.1), Cp,q
□

(Σ) is trivial for p < q, and therefore,

Hp,q(Σ) = 0 for p < q.
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For q = 0 and p > 0, we get

Hp,0(Σ) ≃ ker
(
Fp(0) →

⊕
ϱ∈Σ1

Fp−1(∞ϱ)
)
.

Let α ∈ Fp(0) be an element of the kernel. We show that α = 0. Let V ⊆ NR be the vector
subspace spanned by Σ, that is, V = F1(0) ⊗ R. For any ϱ ∈ Σ1, we have κeϱ(α) = 0. Let
α̂ ∈

∧pV ⋆ be an element such that the restriction of α̂ to the subspace Fp(0) ⊂
∧pV coincides

with α. Since the vectors eϱ, ϱ ∈ Σ1, span V , any element of
∧pV ⋆ whose contraction by all

eϱ is trivial must be trivial. This means α̂ = 0, which implies that α = 0, as required. We
conclude that Hp,0(Σ) = 0.

4.2. Isomorphism between Hp,p(Σ) and Ap(Σ). In bidegree (p, p), we get

Hp,p(Σ) ≃ coker
(
Cp,p−1

□
(Σ) → Cp,p

□
(Σ)

)
≃ coker

( ⊕
|τ |=p−1

F1(∞τ) →
⊕
|σ|=p

F0(∞σ)
)
.

We have a natural isomorphism
⊕

|σ|=pF
0(∞σ) ≃ Zp(Σ), with Zp(Σ) the free abelian group

generated by xσ for σ ∈ Σp, defined in Section 2.6. Moreover, since Σ is saturated at any face
τ ∈ Σp−1,

⊕
|τ |=p−1F

1(∞τ) generates the kernel of the surjective map Zp(Σ) → Ap(Σ), as
described in the Localization Lemma, Theorem 2.2. Hence, we get an isomorphism Hp,p(Σ) ≃
Ap(Σ). By Lemma 3.2, the isomorphism is induced by the map

Cp,p(Σ) Cp,p
□

(Σ) Zp(Σ)

a = (aδ) δ∈Σ
|δ|=p

∑
σ∈Σp

aσ(νσ)xσ.

4.3. Ring isomorphism. It remains to prove that the isomorphism Hp,p(Σ) ≃ Ap(Σ) de-
scribed in the previous section respects the products. This is more subtle and will be treated
in Section 5. We will provide an explicit calculation of the inverse of the map Ψ in Theorem 1.1
that shows that the cup-product in cohomology corresponds to product in the Chow ring.

4.4. Proof of Theorem 1.1. Combining the results of the previous sections, we conclude. □

4.5. Torsion-freeness and Proofs of Theorems 1.2 to 1.5. Let Σ be a unimodular fan.
By the universal coefficient theorem applied to the tropical chain and cochain complexes of
Σ, for each pair of non-negative integers p, q, we get the following exact sequences

0 → Ext1
(
Hp,q+1(Σ),Z

)
→ Hp,q(Σ) → Hp,q(Σ)⋆ → 0, and(4.1)

0 → Ext1
(
Hp,q−1(Σ),Z

)
→ Hp,q(Σ) → Hp,q(Σ)

⋆ → 0.(4.2)

From the first exact sequence, using the vanishing result stated in Theorem 1.1, we obtain
an isomorphism Hp,q(Σ) ≃ Hp,q(Σ)⋆ for p ⩽ q. This shows the vanishing of Hp,q(Σ) for p < q

and an isomorphism Hp,p(Σ) ≃ Hp,p(Σ)⋆. As a consequence, Hp,p(Σ) is torsion-free.

Proof of Theorem 1.4. Let Σ be a unimodular fan. The dual of the map from Hp,p(Σ) to
Ap(Σ) is the natural morphism from the group of Minkowski weights MWp(Σ) (which is dual
to Ap(Σ) by Theorem 2.4) to the tropical homology group Hp,p(Σ). When Σ is saturated,
Theorem 1.1 implies that this map is an isomorphism. By the discussion of Section 8.1, this
map is still an isomorphism even when Σ is non-saturated. This combined with Proposition 4.1
stated below, proves Theorem 1.4. □

Proof of Theorem 1.5. This is a direct consequence of Theorem 1.4. □
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Proof of Theorem 1.3. In the case Σ is a saturated unimodular tropical fan which is a tropical
homology manifold with integral coefficients, we get an isomorphism Hp,q(Σ) ≃ H

BM

d−p,d−q(Σ) =

Hd−p,d−q(Σ), p, q ∈ Z⩾0, which implies as well the vanishing of Hp,q(Σ) for p > q. Applying
the exact sequence (4.2), we deduce the isomorphism Hp,q(Σ) ≃ Hp,q(Σ)

⋆. This in particular
implies that the cohomology groups Hp,p(Σ), and so the Chow groups Ap(Σ) in view of
Theorem 1.1, are all torsion-free. We infer that Ap(Σ) ≃ MWp(Σ)

⋆, and the Chow ring
verifies Poincaré duality. Theorem 1.3 follows. □

Proof of Theorem 1.2. For a matroid m, the Bergman fan Σm is unimodular, saturated, and
a tropical homology manifold with integral coefficients by [JRS18]. Hence, applying Theo-
rem 1.3, we directly deduce that there is an isomorphism of rings A•(m) ∼−→ H•,•(Σ). Note
that Σm is a subfan of the permutahedral fan. Using this, it is easy to see that Σm is projec-
tive. □

It remains to prove the following proposition.

Proposition 4.1. The homology groups Hp,0(Σ) are trivial for each p > 0.

A proof similar to the one given in Section 4.1 for the vanishing of Hp,0(Σ) shall give the
result. Here, we propose a direct elementary argument which is valid without unimodularity
and saturation property.

Proof. Assume p > 0. From the definition of the coefficient groups Fp, we see that for any
τ ∈ Σ, the map

(4.3)
⊕
σ·≻τ

Fp(□
τ
σ) → Fp(∞τ )

is surjective. (If τ is a facet, Fp(∞τ ) is trivial since p > 0.) Take an element a ∈ Cp,0(Σ). By
(4.3) for τ = 0, we find b0 ∈ Cp,1(Σ) such that a1 := a− ∂b0 is trivial at 0. Applying (4.3) for
τ = ρ with any ray ρ ∈ Σ1, we get an element b1 such that a2 := a1 − ∂b1 is trivial at 0 and
also at ∞ρ for any ray ρ ∈ Σ. Proceeding by induction, we finally get that a = ∂(b0+ · · ·+ bd)

is a boundary. Hence, Hp,0(Σ) is trivial. □

5. Explicit description of the inverse Ψ−1 : Ap(Σ) → Hp,p(Σ)

In this section, we provide an explicit description of the inverse of Ψ which shows that the
map Ψ is a morphism of rings, concluding the proof of Theorem 1.1. Following our convention,
we assume that Σ is unimodular and saturated, and work with integral coefficients. (Note
however that the description we give in this section of the application Ap(Σ) → Hp,p(Σ) works
for any unimodular fan, see Section 8.1.)

Before going through this, we introduce few notations that will help in working with the
cohomology of Σ. In the following, if a is a cochain in Cp,q(Σ) and τ, σ ∈ Σ with q = |σ|− |τ |,
we denote by aτ

σ ∈ Fp(□τ
σ) the part of a that lives on the face □τ

σ. If τ = 0, we just write aσ.
For any face δ = □τ

σ of dimension q in Σ, τ, σ ∈ Σ with q = |σ|− |τ |, and for any α ∈ Fp(δ),
we denote by [δ, α] the cochain in Cp,q(Σ) whose restriction to δ is α and which vanishes
everywhere else.

5.1. The inverse in cohomology degree one. We first consider the part A1(Σ). Let
ρ ∈ Σ1. We give an element of H1,1(Σ) whose image by Ψ coincides with xρ. To this end, we
first define an element a ∈ C1,1(Σ) as follows. For any cone σ ∼ ρ in Σ, we choose an element
ασ ∈ F1(□σ

σ∨ρ) that takes value one on the vector eσσ∨ρ ∈ N σ
∞,σ∨ρ, and set

a :=
∑
σ∼ρ

[□σ
σ∨ρ, ασ].
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Note that for any σ ≺· η, we have aσ
η = 0 unless σ ∼ ρ and η = σ ∨ ρ in which case we

have aσ
η = ασ. Moreover, the only part of a that has sedentarity 0 is [□ρ, α0], and we have

Ψ(a) = α0(eρ)xρ = xρ. The statement would follow if a was a cocycle, which is not necessary
the case in general. We will find an element b in C1,1(Σ) supported only on faces of non-
zero sedentarity such that a − b is a cocycle. We will then conclude by observing that since
Ψ(b) = 0, we still have Ψ(a− b) = xρ, so that the inverse image of xρ will be represented by
the class of a− b.

We describe â := da. Recall that eσσ∨ρ is the projection at infinity of eρ into N σ
∞ . Consider a

pair of faces τ ≺ η in Σ with |η| − |τ | = 2. We have

âτ
η = 0 if either ρ ̸≺ η or ρ ≺ τ.

In the remaining cases, there must exist a ray ρ′ such that η = τ ∨ ρ∨ ρ′. In this case, we get

âτ
η = ±(i∗(aτ

τ∨ρ)− π∗(aτ∨ρ′
τ∨ρ′∨ρ)) = ±(ατ − π∗(ατ∨ρ′)),

where π is the projection N τ → N τ∨ρ′.
Notice that âτ

η is zero on the projection of eρ. Therefore, we obtain a well-defined pushfor-
ward πρ

∗(â
τ
η) ∈ F1(□τ∨ρ

η ) where πρ : N τ
∞ → N τ∨ρ

∞ is the natural projection.
Set

b :=
∑
τ,η∈Σ

|η|−|τ |=2
ρ ̸≺τ, ρ≺η

sign(□τ∨ρ
η ,□τ

η )
[
□τ∨ρ

η , πρ
∗(â

τ
η)
]
.

The element b has been defined in order to get db = da on every face not in Σ
ρ

∞. In particular,
the coboundary c := d(a−b) of a−b has support in Σ

ρ

∞. Since dc = 0, the positive-sedentarity-
vanishing Lemma 5.1 below implies that c = 0. This shows that a− b is a cocycle.

Since b has support only on the faces of non-zero sedentarity, we get in addition Ψ(a− b) =
xρ, as required.

5.2. Positive-sedentarity-vanishing lemma. We need the following lemma.

Lemma 5.1 (Positive-sedentarity-vanishing lemma). Let Σ be a unimodular fan. Let ζ be a
non-zero face of Σ and let c ∈ Cp,q(Σ) be a cocycle supported in Σ

ζ

∞. Then we have c = 0.

Proof. By assumption, we have dc = 0. Since c is supported in Σ
ζ

∞, we need to show the
vanishing of cτσ for any pair τ, σ in Σ with |σ| − |τ | = q and ζ ≺ τ .

Let ρ be a ray of ζ, and consider the face η≺· τ such that η∧ ρ = 0 and τ = ρ∨ η. Consider
the face δ = □η

σ of Σ and note that δ is of dimension q + 1. The only face of dimension q in δ

that lies in Σ
ζ

∞ is □τ
σ. Since c has support in Σ

ζ

∞, it follows that the components of c on faces
of δ different from □τ

σ are all zero.
The projection map π : N η

∞ → N τ
∞ induces a surjection π∗ : Fp(□

η
σ) → Fp(□

τ
σ) and in injection

π∗ : Fp(□τ
σ) → Fp(□η

σ). We thus get

π∗(cτσ) = ±(dc)ησ = 0.

We infer that cτσ = 0, and the lemma follows. □

5.3. Cup-product in cubical complexes. In order to extend the description of the inverse
of Ψ to higher degrees, we recall the formula for the cup product in cubical complexes. Let
a ∈ Cp,q(Σ) and b ∈ Cp′,q′(Σ). The cup product a ⌣ b is the element of Cp+p′,q+q′(Σ) with
components described as follows. For any pair of faces τ ≺ η with |η| − |τ | = q + q′, the
component (a ⌣ b)τη on the face □τ

η is given by

(a ⌣ b)τη =
∑

τ≺σ≺η
|σ|−|τ |=q

ϖτ
η(ν

τ
σ ∧ π∗(νσ

η )) · i∗(aτ
σ) ∧ π∗(bση)
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where, in the above sum, for the face τ ≺ σ ≺ η, π denotes the projection π : N τ → N σ.
As usual, this cup-product induces a cup product on cohomology

⌣ : Hp,q(Σ)×Hp′,q′(Σ) → Hp+p′,q+q′(Σ).

5.4. The inverse in higher cohomological degrees. Let σ ∈ Σp be a cone of dimension
p in Σ. By Localization Lemma, Theorem 2.2, it suffices to find a preimage of xσ. Let
ρ1, . . . , ρp be the rays of σ. For i ∈ {1, . . . , p}, we denote by ia the preimage of xρi as defined
in Section 5.1. Note in particular that ia is supported on the faces in Σ of the form □τ

σ with
ρi ≺ σ.

We claim that the element
a := 1a ⌣ 2a ⌣ · · · ⌣ pa

is a preimage of xσ.
We compute a as follows. Denote by Sp the symmetric group of order p. Consider a face

σ′ ∈ Σp and denote by ρ′1, . . . , ρ
′
p ∈ Σ1 the rays of σ′. In the following, for a permutation

s ∈ Sp of [p] and k ∈ [p], we set

σ′(s, k) := ρ′s(1) ∨ · · · ∨ ρ′s(k),

the face of σ′ with rays ρ′s(1), . . . , ρ
′
s(k).

Expanding the cup product using the formula stated in the previous section, we find

aσ′ =
∑
s∈Sp

ϖσ′(νρ′s(1) ∧ · · · ∧ νρ′s(p)) · 1a
σ′(s,0)

σ′(s,1) ∧ 2a
σ′(s,1)

σ′(s,2) ∧ · · · ∧ pa
σ′(s,p−1)

σ′(s,p) ,

where for the ease of reading, we omit to precise the pullback by different projections. Each
term in the above sum is nontrivial only if ρ1 ≺ σ′(s, 1), ρ2 ≺ σ′(s, 2), . . . , and ρp ≺ σ′(s, p),
i.e., if and only if σ′ = σ and the permutation s is identity.

Since πσ(id,j)(eρi) = 0 for j ⩾ i and πσ(id,j) : N → N σ(id,j) the natural projection, we get that

aσ(νσ) = ϖσ(eρ1 ∧ · · · ∧ eρp) · aσ(eρ1 ∧ · · · ∧ eρp)

=
(
ϖσ(eρ1 ∧ · · · ∧ eρp)

)2(
1a

σ(id,0)

σ(id,1) ∧ 2a
σ(id,1)

σ(id,2) ∧ · · · ∧ pa
σ(id,p−1)

σ(id,p)

)(
eρ1 ∧ · · · ∧ eρp

)
= 1a

σ(id,0)

σ(id,0)∨ρ1(eρ1) · · · pa
σ(id,p−1)

σ(id,p−1)∨ρp(eρp)

= 1.

We thus infer that a is a preimage of xσ. This achieves the description of the inverse of the
map Ψ. By construction, the isomorphism respects the product.

6. Characterization of tropical homology manifolds: Proof of Theorem 1.8

In Section 3 we introduced the fine double complex pE
•,• and used the spectral sequence

↓
pE

•,• associated to the filtration by columns (3.1) to prove Theorem 1.7. We consider now the
spectral sequence →

pE
•,• given by the filtration by rows and use it to prove Theorem 1.8.

By definition of the fine double complex, we know that the spectral sequence →
pE

•,• abuts
to Hp,•(Σ)

→
pE

•,• =⇒ Hp,•(Σ).

We will give the proof for unimodular tropical fans and the cohomology with integral coef-
ficients. The proof for simplicial tropical fans and rational coefficients is similar.

We first prove the forward direction. Assume that the simplicial tropical fan Σ is a tropical
homology manifold with integral coefficients. Consider the b-th row of the double complex
→
pE

•,b
0 : · · · −→

⊕
τ≺σ faces of Σ

|σ|=a−1
|τ |=−b

Fp(□τ
σ) −→

⊕
τ≺σ faces of Σ

|σ|=a
|τ |=−b

Fp(□τ
σ) −→

⊕
τ≺σ faces of Σ

|σ|=a+1
|τ |=−b

Fp(□τ
σ) −→ · · ·
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Reorganizing →
pE

•,b
0 as a sum according to τ , we decompose →

pE
•,b
0 as a direct sum of cochain

complexes for the cohomology with compact support of the star fans of codimension −b:

→
pE

•,b
0 =

⊕
|τ |=−b

Cp,•+b
c (Στ ).

Since Σ is a tropical homology manifold with integral coefficients, all the star fans are
tropical homology manifolds with integral coefficients, and so the cohomology with compact
support Hp,q

c (Στ ,Z) is trivial unless q = d − (−b), and for this q, we have Hp,d+b
c (Στ ,Z) ≃

Hd+b−p,0(Στ ,Z)⋆ = Fd−p+b(∞τ). Therefore, the first page of the spectral sequence is given
by

→
pE

a,b
1 =

{⊕
|τ |=−bFd−p+b(∞τ) if a = d,

0 otherwise.

In other words, →
pE

a,b
1 is trivial unless a = d and we have

→
pE

d,•
1 = C

□

d−p,−•(Σ)

where C
□

d−p,•(Σ) denotes the dual to the complex Cd−p,•
□

(Σ) introduced in (1.1). Theorem 1.7
combined with the universal coefficient theorem imply that the homology of C□

d−p,•(Σ) com-
putes Hd−p,•(Σ). Hence, →

pE
•,•
1 degenerates at page two, and we have

→
pE

•,• =⇒ Hd−p,d−•(Σ).

Since
→
pE

•,• =⇒ Hp,•(Σ).

we get the isomorphism of Poincaré duality Hp,q(Σ,Z) ≃ Hd−p,d−q(Σ,Z). More precisely, we
infer that

Hp,p(Σ) ≃ ↓
pE

p,0
∞ ≃ →

pE
d,p−d
∞ ≃ Hd−p,d−p(Σ),

and all the other terms in ↓
pE

•,•
∞ and →

pE
•,•
∞ are trivial.

Applying the same argument to all the star fans Σσ, σ ∈ Σ, we conclude with the proof of
the forward direction.

We now prove the other direction. Assume that Σ
σ verifies Poincaré duality for any face

σ of Σ. By induction, we can assume that Σσ is a tropical homology manifold with integral
coefficients for any nonzero face σ of Σ.

We have a natural inclusion of complexes Cp,•
c (Σ) ≃ pE

•,0 ↪→ pE
•,•. Denote by pE

•,•<0 the
cokernel. We get a short exact sequence of complexes:

(6.1) 0 −→ Cp,•
c (Σ) −→ Tot•(pE

•,•) −→ Tot•(pE
•,•<0) −→ 0.

We already described the cohomology of the first two terms in the sequence. For the third
one, we compute the first page of the spectral sequence associated to filtration by columns,
use the induction hypothesis that the proper star fans are tropical homology manifolds, and
get

↓
pE

d,•<0
1 = C

□

d−p,−•>0(Σ)

where
C

□

d−p,•>0(Σ) := coker
(
Fd−p(0) ↪→ C

□

d−p,•(Σ)
)
.

Moreover, all the other terms in the spectral sequence ↓
pE

•,•<0
1 are trivial.

We treat first the case p < d−1. The cases p = d−1 and p = d will be studied later below.
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In this case, we get

Hk(C
□

d−p,•>0(Σ)) =


Hd−p,d−p(Σ) if k = d− p,
Fd−p(0) if k = 1,
0 otherwise.

The long exact sequence associated to (6.1) leads to

· · · −→ Hp,q
c (Σ) −→ Hp,q(Σ) −→ Hq(C

□

d−p,(d−•)>0(Σ)) −→ Hp,q+1
c (Σ) −→ · · ·

The two middle terms are trivial unless q = p or q = d− 1.
In the case q = p, we get a map Hp,p(Σ) → Hd−p,d−p(Σ). By assumption, this is an

isomorphism.
For q = d− 1, since p < d− 1, we have Hp,d−1(Σ) = Hp,d(Σ) = 0, and we get

0 −→ Fd−p(0) −→ Hp,d
c (Σ) −→ 0,

that is, an isomorphism Fd−p(0) ≃ Hp,d
c (Σ).

All the other terms of Hp,•
c (Σ) vanish.

Using the universal coefficient theorem, we get H
BM

p,d(Σ) ≃ Hp,d
c (Σ)⋆ ≃ Fd−p(0), and

H
BM

p,q (Σ) = 0 for q ̸= d. This is Poincaré duality for the homology with coefficients in Fp,
see 2.7.

In the case p = d, the cohomology H•(C
□

0,•>0(Σ)) is trivial. Hence we have an isomorphism
Hd,•

c (Σ) ≃ Hd,•(Σ) and we conclude in the same way as above.

It remains to treat the case p = d− 1. In this case, C□

1,•>0(Σ) contains only one nontrivial
term: C

□

1,1>0(Σ) =
⊕

ϱ∈Σ1
F0(∞ϱ). Its cohomology is identical. In the above long exact

sequence, the only interesting part is the first row of the following diagram

0 Hd−1,d−1
c (Σ) Hd−1,d−1(Σ)

⊕
ϱ∈Σ1

F0(∞ϱ) Hd−1,d
c (Σ) 0

0 MW1(Σ) W1(Σ) F1(0) 0

∼ ∼

We describe the second row and the vertical maps. We know that Hd−1,d−1(Σ) ≃ H1,1(Σ) ≃
MW1(Σ). Here, W1(Σ) := ZΣ1 ≃

⊕
ϱ∈Σ1

F0(∞ϱ) denotes the group of one dimensional weights
of Σ. Note also that we have a natural map Hd−1,d

c (Σ) → F1(0) described in Section 2.8. By
the definition of the Minkowski weights, the second row is a short exact sequence. The five
lemma implies that the first and the last vertical maps are isomorphisms. Therefore, Hd−1,q

c (Σ)

is trivial for q ̸= d, and Hd−1,q
c (Σ) ≃ F1(0). Using the universal coefficient theorem as above,

and dualizing, we get Poincaré duality for H
BM

d−1,•(Σ). Altogether we obtain Poincaré duality
for H

BM

•,•(Σ). □

7. Proof of Theorem 1.6

In this section, we prove Theorem 1.6. Let α be a class in A1(Σ) associated to a conewise
linear function f on Σ, that is,

α =
∑
ρ∈Σ1

f(eρ)xρ ∈ A1(Σ)

where xρ is the class of xρ in A1(Σ). Via Theorem 1.1, we identify α as an element of H1,1(Σ).
We first prove the forward direction. Assume that α is ample in A1(Σ). This means that

the function f is strictly convex on Σ. Then, f induces a strictly convex function f σ on each
stratum Σσ

∞ (well-defined up to a linear function). We can assume that f σ is positive away
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from the origin ∞σ of the fan Σσ
∞. On any ray ρ = ησ

∞ of Σ, we have f σ(eση ) > 0. For any
effective nonzero Minkowski weight γ = (Σσ

∞,1, w) of dimension one supported on Σσ
∞, we thus

get
⟨α, γ⟩ =

∑
η·≻σ

w(ησ
∞)f

σ(eση ) > 0

proving the forward direction for effective tropical curves in Σ which are given by an effective
nonzero Minkowski weight on some stratum of Σ. The proof can be adapted to give positivity
of the pairing with more general effective nonzero tropical curves in Σ. We omit the details.

Remark 7.1. Note that it follows from the theorem that the effective cone in H1,1(Σ) is
generated by effective Minkowsi weights of dimension one in strata. A similar statement can
be proved in any dimension. ⋄

For the other direction, proceeding by induction, we can assume that the restriction ασ of
α to Σσ

∞ is ample for any σ ̸= 0. Therefore, f is strictly convex at any cone σ ̸= 0 of Σ. We
show that it is also strictly convex at 0.

The following argument is due to Pierre-Louis Blayac. Consider the restriction f ||Σ(1)| of f
to the one-skeleton of Σ. Take the graph Γ of f ||Σ(1)| in N × R. Let C be the convex hull of
Γ ∪ ({0} × R+). The origin is in C. Two cases can occur.

• Either, C contains a point of {0} × R<0. We find a collection (cρ)ρ∈Σ1 of nonnegative
numbers such that ∑

ρ∈Σ1

cρ(eρ, f(eρ)) = (0,−1).

We have found a Minkowski weight γ ∈ MW1(Σ,R) given by the reals cρ such that
⟨α, γ⟩ < 0. Since MW1(Σ,Q) is dense in MW1(Σ,R), this implies the existence of an
element θ ∈ MW1(Σ) with ⟨α, θ⟩ < 0, leading to a contradiction.

• Or, there is a support hyperplane H of C at 0 separating {0}×R<0 from C. If H∩C is
strictly convex, we can move H a bit such that H ∩C = {0}. In this case, we conclude
that f is strictly convex at 0, as required. Otherwise, H∩C contains a non-zero vector
subspace V . The space V is positively generated as the sum of rays of Γ that lie in
V . We thus get an effective element γ of MW1(Σ) with ⟨α, γ⟩ = 0, leading again to a
contradiction.

8. Examples and discussions

In this section, we provide examples and discuss complementary results.

8.1. Torsion in the Chow ring of non-saturated fans and Theorem 1.1. The proof
of Theorem 1.1 gives results in the case where Σ is unimodular but not saturated. In this
situation, we still have a surjective ring morphism A•(Σ) → H•,•(Σ) with a kernel that is
torsion and can be nontrivial, see Example 8.1 below. On the other hand, the kernel can be
trivial even though Σ is not saturated, see [AP23a, Example 12.14]. In any case, as stated in
Theorem 1.1, we have an isomorphism for rational coefficients, as well as a dual isomorphism
with integral coefficients: A•(Σ)⋆ ≃ H•,•(Σ)⋆. The part of the theorem that concerns the
vanishing of cohomology groups for p < q is still valid for any unimodular fan without the
saturation hypothesis, and for p > q = 0 it is valid in full generality.

Example 8.1. We recall the example [AP23a, Example 12.11]. Let (e1, e2) be the standard
basis of Z2 and let e0 = −e1 − e2. Denote by ρi = R⩾0ei, i ∈ {0, 1, 2} the corresponding rays.

In the following, we consider the lattice N := Ze1 + 1
3Z(e1 − e2) in R2. Note that Z2 ⊂ N

is a sublattice of index three in N . The dual lattice M := N⋆ is of index three in (Z2)⋆.
Let ∆ be the one-dimensional fan in N with rays ρ0, ρ1, ρ2 and lattice N∆ = N . The fan

∆ is tropical and unimodular but it is not saturated. Any element f of (Z2)⋆ ∖M induces a
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Hp,q
c (Σ) q = 0 1 2 Hp,q(Σ) q = 0 1 2

p = 0 0 0 Z5 p = 0 Z 0 0

1 0 0 Z3 × Z
/
2Z 1 0 Z5 0

2 0 Z2 Z 2 0 Z2 Z
Table 1. Cohomology of the fan Σ over the one-skeleton of the cube.

meromorphic function on ∆ which is linear but not integral linear. (The meromorphic function
3f will be integral linear.) As a consequence, A1(∆) has torsion: the element xρ1 − xρ2 is
non-zero, but 3 · (xρ1 − xρ2) vanishes in A1(∆).

However, F1(0) is by definition equal to Z2 ⊆ N . Hence, F1(0) = (Z2)⋆, and a direct com-
putation shows that H1,1(∆) ≃ Z. The map from A1(∆) to H1,1(∆) is not an isomorphism.
It is surjective with kernel equal to the torsion part of A1(∆). ⋄

8.2. Torsion in integral cohomology of non-unimodular fans. The following example
shows that the unimodularity assumption is in general needed in the second part of Theo-
rem 1.1.

Example 8.2. Let Σ be the complete fan in the plane R2, with N = Z2, whose rays are the
ρi defined as in Example 8.1. The fan Σ is not unimodular. As for Example 8.1, A1(Σ) has
torsion. Moreover, the cohomology group H1,2(Σ) ≃ Z

/
3Z is nontrivial even though we are

in bidegree (p, q) = (1, 2) with p < q. ⋄

8.3. Necessity of being tropical homology manifold in Theorem 1.3. The assumption
made on Σ being a tropical homology manifold in the statement of Theorem 1.3 is needed, and
the result is not true in general, even for a saturated unimodular tropical fan. Example 8.3 is
a saturated unimodular tropical fan Σ with H2,1(Σ) of rank two.

Example 8.3 (The fan over the one-skeleton of the cube). We consider the fan defined over
the 1-skeleton of a cube, thoroughly discussed in our work [AP23a, Section 12.3]. We consider
the standard cube � with vertices (±1,±1,±1), and let Σ be the two-dimensional fan with
rays generated by vertices and with facets generated by edges of the cube. The fan Σ is locally
irreducible and tropical but not unimodular. We obtain a unimodular fan by changing the
underlying lattice. In what follows, we work with the lattice N :=

∑
ϱ∈Σ1

Zeϱ.
Table 1 summarizes the main cohomological data about the cube. We can compute the

homology via the universal coefficient theorem: the torsion part is shifted by one column
on the left, the rest remains unchanged. Moreover the image of A1(Σ) inside A1(Σ)⋆ is a
sublattice of full rank of index two. ⋄

8.4. Explicit description of Poincaré duality. Let Σ be a unimodular fan of dimension
d. Assume that Σ is a tropical homology manifold with integral coefficients. By Poincaré
duality, there is an isomorphism PD: Hp,p(Σ) ∼−→ Hd−p,d−p(Σ). We describe this map in two
different ways, as follows.

Let α ∈ Hp,p(Σ) and choose a representative a = (aδ)δ∈Σ,|δ|=p of α in Cp,p(Σ). For any
σ ∈ Σ, denote by [Σ

σ

∞] ∈ Hd−|σ|,d−|σ|(Σ) the image of the fundamental class of Σ
σ

∞ in the
homology of Σ. Then, we have

PD(α) =
∑
σ∈Σp

aσ(νσ)[Σ
σ

∞].

Alternatively, we describe PD(α) as a Minkowski weight, through the cycle class map
MWd−p(Σ) → Hd−p,d−p(Σ). Let w : Σd−p → Z be the map defined by w(σ) := ⟨α, [Σσ

∞]⟩.
Then, w is a Minkowski weight and the corresponding cycle in Hd−p,d−p(Σ) is PD(α).
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8.5. The case of non-rational simplicial fans. The results of this paper remain valid for
simplicial fans which are not necessarily rational, working with real coefficients. Let Σ be a
simplicial fan in NR. For each ray ρ ∈ Σ1, we choose a generator eρ so that R+eρ = ρ. We
define the Chow ring A•(Σ,R) of Σ as quotient

A•(Σ,R) := R[xζ ]ζ∈Σ1

/(
I + J

)
where I is the ideal generated by the products xρ1· · ·xρk , for k ∈ N, such that ρ1, . . . , ρk are
non-comparable rays in Σ, and J is the ideal generated by the elements of the form∑

ζ∈Σ1

m(eζ)xζ , m ∈ MR.

Different choices of the generators eρ for ρ ∈ Σ1 give isomorphic Chow rings.
Similarly, we define the sheaves Fp( · ,R) with real coefficients, and the cohomology groups

Hp,q(Σ,R) := Hq(Σ,Fp( · ,R)).
All the theorems stated in the introduction remain valid with the above adjustment of the

coefficients.
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