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Abstract. We describe limits of line bundles on nodal curves in terms of toric arrange-
ments associated to Voronoi tilings of Euclidean spaces. These tilings encode information
on the relationship between the possibly infinitely many limits, and ultimately give rise
to a new definition of limit linear series. This paper and its second and third companion
parts are the first in a series aimed to explore this new approach. In the present article,
we set up the combinatorial framework and show how graphs with integer lengths asso-
ciated to the edges provide tilings of Euclidean spaces by certain polytopes associated to
the graph itself and to certain of its subgraphs. We further provide a description of the
combinatorial structure of these polytopes and the way they are glued together in the
tiling.

In the second part of the series, we describe the arrangements of toric varieties asso-
ciated to these tilings. These results will be of use in the third part to achieve our goal
of describing all stable limits of a family of line bundles along a degenerating family of
curves.
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1. Introduction

The aim of this work and its sequels [AE20a, AE20b] is to describe stable limits of
line bundles on nodal curves in terms of combinatorial geometric properties of graphs.
In this introduction, after briefly mentioning how graphs enter in the picture for such a
purpose, we mainly concentrate on the combinatorial results related to graphs and their
geometry presented in this paper, which we hope should be of independent interest. A

Date: December 31, 2020.
1



2 OMID AMINI AND EDUARDO ESTEVES

reader interested in algebraic geometry shall find a more detailed exposition and a more
clear picture of the link to algebraic geometry in the introductions to the second and third
parts.

Algebraic curves are the most studied and the most understood objects in algebraic
geometry. They were initially studied as embedded objects, first in the projective plane,
then in the projective three dimensional space, and later in higher-dimensional spaces.
However, nowadays, it has become clear that the right point of view for many applications
is to view algebraic curves abstractly and study their various embeddings in terms of linear
series, which are simply the data of a line bundle on the curve and a linear subspace of
the space of sections of that line bundle. The line bundle and the chosen subspace of its
global sections give rise to a morphism of the curve into a projective space.

Abstractly, we can study how curves vary and that leads naturally to the construction
of the moduli space of smooth curves of a given genus. That space is not compact and
though different compactifications of it can be pursued, the one that has established itself
is that by Deligne and Mumford [DM69], which is obtained by adding all the stable curves
to the boundary. It is thus natural to study how line bundles and their linear series vary,
not just along families of smooth curves but along families that include also stable curves.
This study has turned out to be a complex and multifaceted problem.

Stable curves are algebraic curves (proper, one-dimensional, reduced, connected but not
necessarily irreducible schemes) that fail to be smooth in the weakest possible form: the
singularities of a stable curve are all normal crossings, that is, they are ordinary nodes.
Apart from this condition, they are characterized as being those which have an ample
canonical bundle, and this is in fact the property that allows for the construction of their
moduli space. One of the key properties of stable curves that allows for the construction of
a decent moduli space is the stable reduction theorem, which says that a family of stable
curves parameterized by a punctured smooth curve can be completed, after a finite base
change, in a unique way to a family over the whole smooth curve. Unfortunately, no such
thing holds, in general, for line bundles and linear series.

The main combinatorial object associated to a nodal curve X (a curve with only normal
crossings singularities) is its dual graph, and it has been now understood that the com-
binatorics of the dual graphs plays a crucial role in understanding various questions on
the (limiting) behavior of families of curves, see e.g. [Ami14, Ami18, AN20, BJ16, CC19,
CKV13, CKV14, EM02, ES07, OS79].

The dual graph G = (V,E) of a nodal curve X consists of a vertex set V in one-
to-one correspondence with the set of components of X and an edge set E in one-to-one
correspondence with the set of all the nodes. These bijections are also compatible, meaning
that two vertices are connected by an edge if the node corresponding to the edge lies on
both the components corresponding to the vertices.

The geometric study of graphs is linked in many ways to polyhedral geometry. In par-
ticular, one can associate to a graph several types of polytopes, arising also quite naturally
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in applications [Sch03]. This includes the famous Edmonds’ matching polytope, see [LP09,
Section 7] or [Sch03, Section 25], a fundamental object in combinatorial optimization with
plenty of diverse applications, the stable polytope defined by Chvátal [Chv75] and further
studied by Nemhauser and Trotter [NT74] and Padberg [Pad73, Pad74], which is a natural
generalization of the matching polytope, and the flow polytope associated to an oriented
graph [Sch03], used by Altmann and Hille [AH99] in connection to some moduli problems
and by [BZ06, BD09, BS12, Che10] for the study of graph polynomials (from the point of
view of Erhard Theory of integral points in polytopes).

There are two other natural polytopes we can associate to a given graph which are
relevant to algebraic geometry. Recall first that a full rank lattice L in a real vector space
V of dimension n is a discrete subgroup of V which has rank n. If the vector space V
comes with an Euclidean norm, the lattice L gives rise to a tiling of V by polytopes, which
is called the Voronoi tiling. Each Voronoi cell is a polytope centred at a point λ of L, and
by definition consists of all the points of the vector space V which have λ as their closest
point in the lattice, see e.g. the pioneering work of Conway and Sloane for the discussion
of the geometry of Voronoi cells of certain lattices [CS84, CS82].

A given graph G gives naturally rise to two different lattices: that of integral flows,
the flow lattice, and that of integral cuts, the cut lattice. The study of these lattices
was pioneered already in connection with algebraic geometry by the work of Bacher, de
la Harpe and Nagnibeda [BLN97], in which they studied several basic questions about
their combinatorial properties and posed several interesting questions on the shape of their
Voronoi polytopes.

The flow Voronoi polytope is the Voronoi cell associated to the flow lattice and appears
naturally in the description of the local structure of the compactified Jacobians [CKV13,
CKV14]. By Torelli Theorem for graphs [CV10, Art06, Ger82, DG16], it also allows the
determination of the graphic matroid of the graph and gives a classification of the graph up
to Whitney equivalences [Whi32, Whi33]. The structure of the face poset of this polytope,
conjectured by Caporaso and Viviani in [CV10], was determined in a previous work by
the first named author [Ami]. Furthermore, it was shown in [AM10] that Riemann-Roch
Theorem for graphs proved by Baker and Norine [BN07] can be captured and reproved
by studying the geometry of the Voronoi cell of the cut lattice under a certain simplicial
distance function (this means a nonsymmetric distance function having a simplex as its
ball of unity).

The main objective of this paper is to study the cut Voronoi polytope, which is the
Voronoi polytope associated to the cut lattice. We shall describe the face structure of this
polytope in terms of certain acyclic orientations of subgraphs of G. Moreover, when G
comes equipped with an integral edge length function and the extra data of a twisting, a
concept which will be introduced later in this paper, we show that the Voronoi polytopes
associated to G and certain of its subgraphs, determined explicitly by the arithmetic of the
length function and the twisting factor, give rise to a periodic tiling of the Euclidean space.
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These particularly esthetic tilings give rise in [AE20a] to what we call toric arrangements,
naturally embedded into products of infinite chains of projective lines, and are used as the
main tools in [AE20b] in solving the degeneration problem for line bundles.

1.1. Overview of the results. Let G = (V,E) be a given graph that we assume to be
connected. For our purposes, we can discard those edges that form loops, so we assume G
to be loopless. Let E be the set of all oriented edges (arrows) that can be obtained from E:
for each edge we get two arrows pointing each to one of the two different vertices incident
to that edge. For an oriented edge e ∈ E with extremities u and v, we write e = uv if e is
oriented from u to v, even if e is not unique (in case G has parallel edges). In this case we
call u and v the tail and head of e, respectively, and sometimes denote them by te and he.
Also, we let e denote the reverse arrow, i.e., e = vu. In other words, he = te and te = he.

Given a ring A, we associate to G two complexes:

dA : C0(G,A) −→ C1(G,A) and ∂A : C1(G,A) −→ C0(G,A).

Here, C0(G,A) is the A-module of functions V → A, and C0(G,A) is the free A-module
generated by V . Also, C1(G,A) is the A-module of functions f : E → A subject to the
condition that f(e) = −f(e) for each e ∈ E, and C1(G,A) is the quotient of the free
A-module generated by the elements of E modulo the submodule generated by elements of
the form e + e for all e ∈ E. Finally, dA(f)(e) = f(v) − f(u) and ∂A(e) = v − u for each
oriented edge e = uv ∈ E.

There are natural isomorphisms: C0(G,A) → C0(G,A), taking v to the characteristic
function χv ; and C1(G,A)→ C1(G,A) taking e to χe − χe

. (Here χe is the characteristic
function of e which takes value 1 on e and value 0 on every other oriented edge, including
e.) Also, there are bilinear forms 〈 , 〉 on C0(G,A) and C1(G,A) such that 〈v , w〉 = δv,w
for v, w ∈ V and 〈e , f〉 = δe,f − δe,f for e, f ∈ E. The isomorphisms induce bilinear forms
on C0(G,A) and C1(G,A) as well. Let d∗A : C1(G,A) → C0(G,A) be the homomorphism
corresponding to ∂A under the isomorphisms. It is easy to see that d∗A is the adjoint to dA,
that is, 〈f, d∗A(h)〉 = 〈dA(f) , h〉 for all f ∈ C0(G,A) and h ∈ C1(G,A).

Let H0,A :=
{
f ∈ C0(G,A) |

∑
f(v) = 0

}
and FA := Im(dA). Denote by ∆A := d∗AdA

the Laplacian of the graph G. The homomorphism d∗A induces an injective map from FA to
H0,A. For A = R the map is an isomorphism. Moreover, the bilinear form 〈 , 〉 on C1(G,R)
induces one on FR, which corresponds via d∗R to the bilinear form ( , ) on H0,R defined by

∀f, g ∈ H0,R (f , g) := 〈h , g〉,

where h is any element of C0(G,R) with ∆R(h) = f . Denote by q the positive quadratic
form corresponding to ( , ), so using the previous notation we have q(f) := 〈h , f〉.

In the present article we will describe an infinite family of tilings of H0,R by polytopes
where each tiling in the family is associated to the choice of an edge length function
` : E → Z>0 and a twisting factor m ∈ C1(G,Z). Here, by a tiling of a real vector space V
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by polytopes we mean an (infinite) family F consisting of polytopes embedded in V and
covering V which verify the following two conditions:

• Each face of a polytope in F belongs to F .
• For each pair of polytopes P and Q in F , the intersection P ∩Q is either empty or
is a common face of both polytopes.

By removing from a polytope in F all the faces of positive codimension, we get the cor-
responding open face. The open faces of the polytopes in F then form a stratification of
H0,R into strata of various dimensions.

In the case of the regular edge length function, that is, when all the edges have length
equal to one, and m is trivial, the tiling is the usual Voronoi tiling defined as follows: Let
ΛA := Im(d∗A). Then, as we observed before, we have ΛR = H0,R, and ΛZ forms a sublattice
of H0,Z. Since the graph G is connected, it is a consequence of the celebrated Kirchhoff
matrix-tree Theorem that ΛZ has finite index in H0,Z equal to the number of spanning trees
of G. (A spanning subgraph of a graph G = (V,E) is a subgraph T = (V, F ) with the
same vertex set V and any edge set F ⊂ E; it is a tree if it is a connected graph without
cycles.) In this case, the tiling of H0,R is what we call the standard Voronoi tiling of G,
which is by definition the Voronoi decomposition of H0,R with respect to the lattice ΛZ and
the quadratic form q: the tiles are the full dimensional polytopes

Vorq(β) :=
{
η ∈ H0,R

∣∣∣ q(η − β) ≤ q(η − α) for every α ∈ ΛZ − {β}
}

for β ∈ ΛZ, called Voronoi cells, and their faces.
In the standard Voronoi tiling each Voronoi cell is a translation of that centered at the

origin, which we call the cut Voronoi polytope of G. It comes with a partial order on
its faces. One of our results in this paper establishes for any graph G an isomorphism
between this partially ordered set and the partially ordered set of what we call coherent
acyclic orientations of cut subgraphs of G.

A cut subgraph of G is a spanning subgraph G′ of G for which the vertex set V can be
partitioned into non-empty subsets Vi, for i in a finite set I, in such a way that the edges
of G′ are those of G connecting vertices of Vi to Vj for i 6= j. A coherent acyclic orientation
of the cut subgraph G′ is an orientation of G′ which is induced by the choice of partition
of vertex set V = ti∈IVi as above and a total order < on I in such a way that for each
pair of elements i, j ∈ I with i < j in the total order, all edges between Vi and Vj get the
orientation with their head in Vj.

Finally, we define a partial order on coherent acyclic orientations of cut subgraphs of G
by saying that D1 is smaller than D2, for coherent acyclic orientations D1 and D2 of cut
subgraphs G1 and G2 of G, if E(D2) ⊆ E(D1). Here, E(Dj) denotes the set of oriented
edges of Dj in G for j = 1, 2.

We may now state one of the theorems we prove in this paper, see Theorem 3.19:

Theorem A. The face poset of the cut Voronoi polytope of G is isomorphic to the poset
of coherent acyclic orientations of cut subgraphs of G.
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The standard Voronoi tiling is one of the tilings we consider. In the case of a more general
length function `, the corresponding tiling might have non-isomorphic top-dimensional
cells, and the tiling in that case is made of a gluing of various cut Voronoi polytopes
associated to certain connected subgraphs of G, which may not include G itself if the
twisting m is nontrivial! These subgraphs are determined by basic arithmetic properties
concerning divisibility by the edge lengths. In order to motivate the consideration of these
tilings, we need to come back to our original algebro-geometric motivation.

Let thus X be a connected nodal curve defined over an algebraically closed field κ
such that G is the graph obtained from the dual graph of X by removing the loops. Let
π : X → B be a (one-parameter) smoothing of X. Here, B is the spectrum of κ[[t]] and
π is a projective flat morphism whose generic fiber is smooth and whose special fiber
is isomorphic to X. We fix such an isomorphism. The total space X is regular except
possibly at the nodes of X. For each e ∈ E, the completion of the local ring of X at the
corresponding node Ne is isomorphic to κ[[u, v, t]]/(uv − t`e) for a certain integer `e > 0,
called the singularity degree or the thickness of π at Ne. If all `e = 1, then for each v ∈ V
the corresponding irreducible components Xv of X is a Cartier divisor of X ; we call π
Cartier in this case.

A finite base change B → B is obtained by sending t to tn for a given n. The resulting
family πn : X n → B is similar to the original one: the special fiber is the same, the generic
fiber is a base field extension of the original one, but the singularity degrees `e change to
n`e.

Let now Lη be an invertible sheaf on the generic fiber of πm for some m. If Xm is regular
(only ifm = 1), then Lη extends to an invertible sheaf L on Xm. More generally, Lη extends
to a relatively torsion-free, rank-one sheaf L on Xm/B, that is, a B-flat coherent sheaf on
Xm whose fibers over B are torsion-free, rank-one. The extensions are not unique. If πm is
Cartier, then for each f ∈ C0(G,Z), the sheaf L ⊗ OXm(

∑
f(v)Xv) is another extension,

and these are all the extensions. More generally, in [Est01], a similar procedure is described
to change from one extension to another. Or one could apply a sequence of blowups at
nodes to get a partial resolution X̃m → Xm such that the composition π̃m : X̃m → B
is Cartier. The special fiber of π̃m is the curve Xm` obtained from X by splitting each
node Ne apart and adding a chain C(m`e)

e of m`e− 1 smooth rational curves connecting the
branches. The generic fiber of π̃m is the same as that of πm, so Lη extends to relatively
torsion-free, rank-one sheaves L on Xm/B that differ from each other as described above.
Pushforwarding under the resolution map X̃m → Xm gives us a bijection from the set of
those extensions L which are admissible (see below) to that of all the relatively torsion-free,
rank-one extensions of Lη on Xm/B.

Furthermore, one could do yet another finite base change, this time to πm, extend Lη
to the new generic fiber and consider its torsion-free, rank-1 extensions. Of course, they
will be extensions on a different total space. But the special fibers of all the πn are the
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same. The restrictions to X of all these extensions for all integers n divisbile by m are
torsion-free, rank-one sheaves that we call the stable limits of Lη.

Let L be a relatively torsion-free, rank-one sheaf on X̃m/B extending Lη. Let H := Hm`

be the subgraph of the dual graph of Xm` obtained by removing the loops; it is obtained
directly from G by subdividing m`e − 1 times each edge e of G. Since π̃m is Cartier, L
restricts to torsion-free, rank-one sheaves on the components of Xm`; their degrees form
a divisor D̃ of H. We say that L and D̃ are admissible if for each edge e of G the value
of D̃ is 0 at all but at most one vertex of V (H) − V (G) on e, where the value is 1. In
Section 2 we explain how the various divisors D̃ associated to admissible extensions L on
X̃m/B are related. We show that they differ by the (principal) divisors of certain functions
in C0(H,Z) uniquely determined by their restrictions to G; see Theorem 2.10.

Furthermore, fix one extension L on X̃m/B, with associated divisor D̃ on H. Fix an
orientation o : E → E of the edges of G, and denote by Eo := Im(o) the set of oriented
edges in the orientation. Let m ∈ C1(G,Z) whose value at each e ∈ Eo is equal to the
number of edges between he and the vertex of H on the subdvision of e for which D̃ takes
value 1. Also, for each f ∈ C0(G,Z) and each e ∈ E(G) put

δme (f) :=
⌊f(he)− f(te) + me

m`e

⌋
and dmf (e) :=

1

2

(
δme (f) + δme (f)

)
.

Then the dmf (e) are the values of a function dmf ∈ C1(G,R). They are half integers; let Gm
f

be the spanning subgraph of G whose edges are those supporting e ∈ E(G) with dmf (e) ∈ Z.
Let

VormH(f) := d∗(dmf ) + VorGm
f
(O).

In the present paper we prove that the set of polytopes VormH(f) with Gm
f connected, as

f ranges in C0(G,R), provide a tiling of H0,R, denoted VormH , the most general tiling we
consider; see Theorem 5.9.

The tiling VormH is obtained from purely combinatorial data: G, m` and m chosen at will.
But if it arises from algebro-geometric degeneration data as above, we will see in [AE20b]
that there is a natural bijection between the set of all the tiles of VormH , top-dimensional
or not, and the set of all stable limits of Lη. Furthermore, the toric arrangement Y st

`,m

associated to VormG,`, as we describe in [AE20a], Section 4, parameterizes a relatively torsion-
free, rank-one sheaf on X×Y st

`,m over Y st
`,m whose fibers are all the stable limits of Lη, giving

a structure to this set; see [AE20b], Theorem 5.7.

1.2. Content of the paper. After a brief presentation of the divisor theory on graphs,
in Section 2 we define admissible divisors and give a classification of those equivalent to a
given divisor in terms of principal G-admissible divisors. They are then used to define the
collection of all pairs (DI , GI) associated to the stable limits in the above picture, although
here we only use the combinatorial definition and leave the link to the actual stable limits
to the third part [AE20b] of the work . In Section 3 we treat the case of uniform edge
lengths equal to one, and establish Theorem A. Sections 4 and 5 are then devoted to the
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generalization of the picture given in Section 4 to the case of arbitrary edge lengths and
the presence of a twisting.

1.3. Convention. For ease of reading, we gather here some of the terminology and nota-
tion we use in this paper, which are mostly standard and can be found in any text book
on graph theory, see e.g. [Bol98, BM08]. All our graphs will be finite. Our graphs can
have multiple edges but we will not allow loops. The vertex and edge set of a graph G are
denoted by V (G) and E(G), respectively (or just V and E, if the graph G is clear from
the context). A subgraph G′ of G is called spanning if V (G′) = V (G); the data of the
spanning subgraph G′ is then equivalent to the data of a subset E ′ of E. For a subset X of
V (G), the induced subgraph on X is the subgraph whose vertex set is X and whose edge
set consists of all the edges e of G whose both endpoints are in X.

For a graph G = (V,E), we denote by E the set consisting of the edges of E with a
choice of an orientation. Thus for each edge {u, v} in E, there is one oriented edge uv in
E, having u as its tail and v as its head, as well as an oriented edge vu in E, having v as
its tail and u as its head in E. If e = uv is an oriented edge in E, the same edge with the
reverse orientation vu is denoted by e. Also, we sometimes denote the tail of e by te and
its head by he.

An orientation o of the graph G is a map from E to E which to any edge {u, v} associates
one of the two oriented edges uv or vu in E. An oriented graph is by definition a graph
G = (V,E) and a choice of an orientation for the edges of G; the oriented graph associated
to the orientation is sometimes denoted by Go. If D is an oriented graph, we also use E(D)
to denote the oriented edges of D. An oriented cycle in an oriented graph D is a sequence
v1, e1, v2, e2, . . . , vl, el, v1 such that v1, . . . , vl are distinct vertices and e1, . . . , el are oriented
edges in D satisfying ei = vivi+1 for each i = 1, . . . , l− 1 and el = vlv1. An oriented graph
D is called acyclic if there is no oriented cycle in D; if D is associated to an orientation o
of G, the orientation o is called acyclic in that case.

2. Admissible Divisors on graphs

2.1. Divisors on graphs. In this subsection, we briefly recall the formalism of divisor
theory on graphs which parallels the theory on algebraic curves. More on the subject can
be found in [BLN97, BN07, Ami18, BJ16]. We then present in the next section a variant
of the setup for graphs with the presence of edge-lengths.

Let G = (V,E) be a finite loopless and connected graph. Multiple edges are allowed.
The group of divisors on G denoted by Div(G) is by definition the free abelian group
generated by vertices in V . We write (v) for the generator associated to v ∈ V , so

Div(G) :=
{∑
v∈V

nv(v) | nv ∈ Z
}
.
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For a divisor D ∈ Div(G), the coefficient of (v) in D is denoted D(v). Its support,
Supp(D), is the set of vertices v with D(v) 6= 0. And its degree, deg(D), is defined as

∀ D ∈ Div(G), deg(D) :=
∑
v∈V

D(v).

Denote as before C0(G,Z) := {f : V → Z}, the set of all integer valued functions
on vertices of G. The functions in C0(G,Z) play a role analogous to the role of rational
functions in the theory of algebraic curves.

We can define the orders of vanishing of these rational functions at vertices as follows.
For each vertex v ∈ V , denote by ordv : C0(G,Z) → Z the function of order of vanishing
at v which on f ∈ C0(G,Z) takes the value

ordv(f) :=
∑
e∈E
he=v

f(te)− f(he).

To any f we associate the divisor div(f) defined by

div(f) :=
∑
v∈V

ordv(f)(v).

Elements of this form in Div(G) are called principal, and the subgroup of Div(G) formed
by principal divisors is denoted by Prin(G).

A divisor D1 is called linearly equivalent to a divisor D2 and we write D1 ∼ D2 if the
difference D1−D2 is principal, i.e., there exists f ∈ C0(G,Z) such that D1 = D2 + div(f).

2.2. Chip firing game. There is a close connection between the theory of divisors on
graphs and a game called chip-firing played on the graph [BTW87, Dha90, Gab93b,
Gab93a, Big99, BLS91].

Consider the following game played on a connected graph G. Vertices represent people
in a group, where edges represent friendship. Each person v ∈ V has a certain number
of chips nv ∈ Z, where nv < 0 means v is in debt. The aim of the group is to achieve a
situation where no one is in debt. The rule of the game is that at each step one person
can decide to give one chip to each and all of its friends. The question is the existence of
a winning strategy for the group. One can represent each configuration of the game with
the corresponding divisor

∑
v∈V nv(v). A configuration can be reached from another if the

two corresponding divisors are linearly equivalent. The existence of a winning strategy
is then equivalent to the existence of a function f such that adding div(f) to the divisor
associated to the configuration gives an effective divisor, i.e., a divisor with only non-
negative coefficients.

2.3. Admissible divisors on graphs. Let G = (V,E) be a finite connected graph with
integer edge lengths ` : E → N. The length of an edge e is denoted by `e. We extend ` to
E via the forgetful map E→ E.
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Let H be the graph obtained by subdividing `e − 1 times each edge e of G, that is, by
replacing each oriented edge e = uv in G by a path Pe = uxe1x

e
2 . . . x

e
`e−1v for new vertices

xe1, . . . , x
e
`e−1. It will be convenient to define xe0 := u and xe`e := v. Note that, with our

convention, xei = xe`e−i for i = 0, . . . , `e.
In this section we define G-admissible divisors on H and characterize those that are

linearly equivalent to a given D ∈ Div(H).

Definition 2.1 (G-admissible divisors). A divisor D on H is called G-admissible if for
each oriented edge e of G the value of D is 0 at all but at most one vertex among the xej
for j = 1, . . . , `e − 1, where the value is 1.

2.4. Characterization of G-admissible divisors: basic case. Our aim in this sub-
section and the following one is to characterize all admissible divisors which are linearly
equivalent to a given divisor D ∈ Div(H). To simplify the presentation, we first treat the
case where D has support in the vertices of G, that is, Supp(D) ⊆ V (G) ⊆ V (H).

Let f : V (G)→ Z be an integer valued function on the vertices of G. For each oriented
edge e = uv of G, define

δe(f) := bf(v)− f(u)

`e
c.

Note that the value of δe(f) + δe(f) is either 0 or −1, depending on whether f(v)−f(u)
`e

is an
integer or not, respectively.

Definition 2.2 (PrincipalG-admissible divisor). The principal G-admissible divisor div`(f)
associated to a function f : V (G) → Z is the G-admissible divisor in Div(H) defined as
follows:

• For each vertex u of G, define the coefficient of div`(f) at u by:

div`(f)(u) :=
∑
e∈E
te=u

δe(f).

• For each oriented edge e = uv of G with difference f(v)− f(u) not divisible by `e,
define

div`(f)(xere) := 1,

where re is the remainder of the Euclidean division of f(v)− f(u) by `e.
• For each other vertex z of H, define div`(f)(z) := 0.

By definition, it is clear that div`(f) is G-admissible. We give now an alternative descrip-
tion of div`(f), which shows that it is indeed a principal divisor on H. For this, consider
the extension f̃ : V (H) → Z of f defined as follows: For each oriented edge e = uv of G
and each j = 1, . . . , `e − 1, set

f̃(xej) :=

{
f(u) + jbf(v)−f(u)

`e
c if j ≤ `e − re,

f(u) + jbf(v)−f(u)
`e

c+ (j − `e + re) if j ≥ `e − re,
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where re is the remainder of the division of f(v) − f(u) by `e. (Notice that the value of
f̃ at xej is independent of the orientation of e.) The following straightforward proposition
justifies the name given to div`(f).

Proposition 2.3. For every function f : V (G) → Z, the two divisors div`(f) and div(f̃)
are the same. In particular, div`(f) is a principal divisor on H.

We have the following theorem.

Theorem 2.4. Let D ∈ Div(H) with support in V (G) ⊆ V (H). Then:
(i) For every f : V (G) → Z, the divisor D + div`(f) is G-admissible and linearly

equivalent to D on H.
(ii) Every G-admissible divisor D′on H linearly equivalent to D is of the form D +

div`(f) for some f : V (G)→ Z.

Proof. Let f : V (G)→ Z and f̃ : V (H)→ Z the extension of f described above. We have
div`(f) = div(f̃), which shows that D + div`(f) ∼ D on H. In addition, since div`(f) is
G-admissible, and Supp(D) ⊆ V (G), the divisor D + div`(f) is G-admissible. This proves
the first statement.

To prove the second statement, let D′ be a G-admissible divisor linearly equivalent to D,
and let F : V (H)→ Z be a function so that D′ = D+ div(F ). Denote by f the restriction
of F to V (G). We claim that F coincides with the extension f̃ of f to V (H), which will
obviously prove (ii). Indeed, let e = uv be an oriented edge of G, and for j = 1, . . . , `e,
put

sj := F (xej)− F (xej−1).

Now, sj+1 − sj = D′(xej) for j = 1, . . . , `e − 1 because D has support in V (G). Since D′ is
G-admissible, the difference sj+1 − sj is either 0 or 1, being 1 for at most one value of j.
In other words, there are integers s and ρ, with 1 ≤ ρ ≤ `e, such that

s1 = s2 = · · · = sρ = s, and sρ+1 = · · · = s`e = s+ 1.

Note that f(v) − f(u) = F (v) − F (u) =
∑`e

j=1 sj = `es + `e − ρ. It follows that `e − ρ is
the remainder of the division of f(v)− f(u) by `e, and a simple verification shows that the
two functions F and f̃ take the same value on all the vertices xej . �

2.5. Characterization of G-admissible divisors: general case. We treat now the
general case of a divisor D ∈ Div(H) whose support is not necessarily in V (G). To do so,
we need to introduce a “twisted” version of div`(f), taking into account the values of D in
V (H)− V (G).

First, to each divisor D ∈ Div(H), we associate the function tD : E(G)→ Z which takes
the value tDe on each oriented edge e = uv of G given by:

tDe :=
`e−1∑
j=1

(`e − j)D(xej).
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Proposition 2.5. For every oriented edge e = uv in E(G), we have

tDe + tDe = `e

`e−1∑
j=1

D(xej).

Proof. Clear from the identity xej = xe`e−j. �

Definition 2.6. Let t : E(G) → Z be an integer valued function taking value te on the
oriented edge e ∈ E(G). For each f : V (G)→ Z and e ∈ E(G), define

δe(f ; t) := bf(v)− f(u) + te
`e

c.

Proposition - Definition 2.7 (Canonical extension of functions with respect to a divisor).
Let D be a divisor on H. For each f : V (G)→ Z, there is a unique extension f̃ : V (H)→ Z
such that D + div(f̃) is G-admissible. The function f̃ is called the canonical extension of
f with respect to D, and is alternatively characterized by the following properties:

(1) For each oriented edge e = uv of G, and each j = 1, . . . , `e−1, the divisor D+div(f̃)
takes value 0 at xej, unless `e− j is the remainder of the division of f(v)−f(u)+ tDe
by `e, in which case it takes value 1.

(2) f̃(xe1) = f(u) + δe(f ; tD).

Proof. It is enough to prove the existence and uniqueness of a sequence of integers se1, . . . , se`e
for each oriented edge e = uv of G satisfying the following two conditions:

(i) For each j = 1, . . . , `e − 1, the quantity ρej defined by

ρej := D(xej) + sej+1 − sej
is either 0 or 1, and we have ρej = 1 for at most one value of j.

(ii) f(v) = f(u) +
∑`e

j=1 s
e
j .

Indeed, if f̃ exists such that D + div(f̃) is G-admissible, then put, for each oriented edge
e = uv of G,

sej := f̃(xej)− f̃(xej−1) for j = 1, . . . , `e.

Then the sequences (sej) satisfy (i)–(ii). Also, the uniqueness of the sequences (sej) implies
that of f̃ . Conversely, the existence of the (sej) implies that of f̃ , as it is enough to put,
for each oriented edge e = uv of G,

f̃(xej) := f(u) +

j∑
i=1

sei for j = 1, . . . , `e − 1.

It is actually necessary to verify that the value of f̃ at the vertex xej does not depend on
the orientation of e for all e ∈ E. This follows from Condition (ii) and the equality

(iii) sej = −se`e−j+1 for j = 1, . . . , `e,
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which we will prove to hold in a moment as a consequence of Conditions (i) and (ii).
Finally, the uniqueness of f̃ implies that of the sequences (sej).

Let e = uv be an oriented edge of G. Given se1, the equations in Condition (i) express
a bijective relation between the sequences (sej) and (ρej). The relation between the sej and
the ρej can also be expressed as

sej+1 = se1 −
j∑
i=1

D(xei ) +

j∑
i=1

ρei for j = 1, . . . , `e − 1.

In particular,

se`e = se1 −
`e−1∑
j=1

D(xej) +
`e−1∑
j=1

ρej .

Let thus se1, . . . , se`e be a sequence of integers and ρ
e
1, . . . , ρ

e
`e−1 the corresponding sequence

given by the equations in Condition (i). Then

f(u) +
`e∑
j=1

sej = f(u) +
`e∑
j=1

(
se1 −

j−1∑
i=1

D(xei ) +

j−1∑
i=1

ρei

)

= f(u) + `es
e
1 −

`e−1∑
j=1

(`e − j)D(xej) +
`e−1∑
j=1

(`e − j)ρej

= f(u) + `e(s
e
1 − δe(f ; tD)) + `eb

f(v)− f(u) + tDe
`e

c − tDe +
`e−1∑
j=1

(`e − j)ρej

= f(v)− re + `e(s
e
1 − δe(f ; tD)) +

`e−1∑
j=1

(`e − j)ρej ,

where re is the remainder of the division of f(v)− f(u) + tDe by `e. Therefore, Condition
(ii) is verified for the sequence (sej) if and only if

`eδe(f ; tD) + re = `es
e
1 +

`e−1∑
j=1

(`e − j)ρej .

We conclude that if Conditions (i) and (ii) are verified, then so are the following two
properties:

(1’) For each oriented edge e = uv of G and each j = 1, . . . , `e − 1, the value of ρej is
zero, unless `e − j is the remainder of the division of f(v) − f(u) + tDe by `e, in
which case the value is 1;

(2’) se1 = δe(f ; tD).

They are the counterpart to Properties (1) and (2) of the corresponding f̃ mentioned in
the statement of the proposition. They prove the uniqueness of the ρej and the sej .
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On the other hand, defining the ρej by Property (1’) above, and the sej such that Property
(2’) holds and the equations in Condition (i) are verified, we get Condition (ii).

It remains to prove that Condition (iii) follows from Conditions (i) and (ii). Notice first
that, for each oriented edge e = uv of G and each j = 1, . . . , `e − 1, we have ρej = ρe`e−j, a
direct consequence of Property (1’), describing the value of ρej , and Proposition 2.5. This
combined with the definition of ρej given in (i), gives the equation sej+1−sej = se`e−j+1−se`e−j
as well. It will be thus enough to verify that se`e = −se1. And, indeed, first note that, by
Property (2’) and Proposition 2.5,

−se1 = −δe(f ; tD) = −bf(u)− f(v) + tDe
`e

c = df(v)− f(u)− tDe
`e

e

= d
f(v)− f(u) + tDe − `e(

∑`e−1
j=1 D(xej))

`e
e

= df(v)− f(u) + tDe
`e

e −
`e−1∑
j=1

D(xej)

= se1 −
`e−1∑
j=1

D(xej) + df(v)− f(u) + tDe
`e

e − bf(v)− f(u) + tDe
`e

c.

On the other hand, from (1’), we get the equation

df(v)− f(u) + tDe
`e

e − bf(v)− f(u) + tDe
`e

c =
`e−1∑
j=1

ρej .

Combining these two equations, we get

−se1 = se1 −
`e−1∑
j=1

(D(xej)− ρej) = se1 −
`e−1∑
j=1

(sej − sej+1) = se`e ,

and (iii) follows. �

Definition 2.8. Let D be a divisor on H. For each function f : V (G)→ Z, we denote by
div`(f ;D) the principal divisor div(f̃) associated to the canonical extension f̃ of f with
respect to D.

Proposition 2.9. Let D be a divisor on H and f : V (G)→ Z. Then D′ := D+div`(f ;D)
has the following properties:

(1) For each vertex u of G, we have D′(u) = D(u) +
∑

e∈E ; te=u δe(f ; tD).
(2) For each oriented edge e = uv of G such that the division of f(v)− f(u) + tDe by `e

has positive remainder r, we have D′(xe`e−r) = 1.
(3) For any other vertex z of H, we have D′(z) = 0.

Proof. This is a reformulation of Properties (1) and (2) in Proposition-Definition 2.7. �
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The following is a refinement of Theorem 2.4.

Theorem 2.10. Let D be a divisor on H.
(i) For every f : V (G)→ Z, the divisor D + div`(f ;D) is G-admissible.

(ii) Every G-admissible divisor D′ on H linearly equivalent to D is of the form D +
div`(f ;D) for some f : V (G)→ Z.

Proof. By Proposition 2.9, all divisors of the form D+div`(f ;D) are G-admissible, whence
the first statement. Conversely, to prove the second statement, write D′ = D+ div(F ) for
a function F : V (H)→ Z, and denote by f : V (G)→ Z the restriction of F to the vertices
of G. Then F is an extension of f such that D + div(F ) is G-admissible. It follows from
Proposition-Definition 2.7 that F is the canonical extension of f with respect to D, and
thus D′ = D + div`(f ;D). �

For later use, we state the following consequence of Proposition-Definition 2.7.

Proposition 2.11. Let D be a divisor on H and f1, f2 : V (G) → Z. Let f := f1 + f2.
Denote by f̃ and f̃1 the canonical extensions of f and f1 with respect to D. Denote by f̃2

the canonical extension of f2 with respect to the divisor D1 := D + div`(f1;D). Then we
have

f̃1 + f̃2 = f̃ .

In particular,
div`(f ;D) = div`(f1;D) + div`(f2, D1).

Proof. Note that

D + div(f̃1 + f̃2) = D + div(f̃1) + div(f̃2) = D1 + div(f̃2).

It follows that D + div(f̃1 + f̃2) is G-admissible. Since f̃1 + f̃2 restricts to f1 + f2 on the
vertices of G, it follows from Proposition-Definition 2.7 that f̃1 + f̃2 = f̃ . The second
statement is immediate. �

2.6. G-admissible chip firing. In this section we define the notion of G-admissible chip
firing, and show that any two G-admissible divisors in the same linear equivalence class
are connected via a sequence of G-admissible chip firing moves.

Let D be a G-admissible divisor on H, and let v be a vertex of G. For each oriented
edge e of G with te = v, define

(2.1) je(v) :=

{
j if D(xej) = 1 for a certain j ∈ {1, . . . , `e − 1},
0 otherwise.

Define the cut Cv = Cv(D) in H as the subset of all the vertices xei for 0 ≤ i ≤ je(v) for
all oriented edges e of G with te = v.
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Definition 2.12 (G-admissible chip-firing). Let D be a G-admissible divisor, and let v be
a vertex of V (G). The G-admissible chip firing move of D at v, denoted Mv(D), is the
divisor on H obtained from D after all the vertices in the cut Cv(D) fire.

The terminology is justified by the following proposition. For each vertex subset A ⊆
V (G), let χ

A
: V (G)→ Z be the characteristic function of A, taking value 1 at u ∈ A and

0 elsewhere. The characteristic function of A = {v} is simply denoted by χv .

Proposition 2.13. Let D be a G-admissible divisor on H. Then for each vertex v, the
divisor Mv(D) is G-admissible. Moreover, Mv(D) = D + div`(χv ;D).

Proof. The first statement is clear. For the second, observe first that Mv(D) = D +
div(χ

Cv
). SinceMv(D) is admissible, and χ

Cv
restricts to χv on the vertices of G, it follows

from Proposition-Definition 2.7 that χ
Cv

is the canonical extension of χv with respect to
D. Thus div(χ

Cv
) = div`(χv ;D). �

We next show that any two linearly equivalent G-admissible divisors are connected to
each other by a sequence of G-admissible chip firing moves. In other words:

Proposition 2.14. Let D be a G-admissible divisor on H. Then, for each G-admissible
divisor D′ linearly equivalent to D, there exist an integer N and a sequence v1, . . . , vN of
vertices of G such that D′ = MvN (. . . (Mv1(D)) . . . ).

Proof. Let D′ be a G-admissible divisor linearly equivalent to D. By Theorem 2.10, there
exists a function f : V (G)→ Z such that D′ = D+ div`(f ;D). Without loss of generality,
we may assume that the minimum value of f is zero. Then there are v1, . . . , vN ∈ V (G),
possibly repeated, such that f =

∑N
i=1 χvi

, where N :=
∑

v f(v). Define f0 := 0, and
for each i = 1, . . . , N put fi := χv1

+ · · · + χvi
. Define Di := D + div`(fi;D). Since

fi+1 = fi + χvi+1
, by Propositions 2.11 and 2.13, we have

Di+1 = Di + div`(χvi+1
;Di) = Mvi+1

(Di),

which yields
MvN

(MvN−1
(. . .Mv1

(D) . . . )) = DN = D′.

�

3. Tilings I: uniform edge length one

3.1. Setting. Let G = (V,E) be a finite connected graph without loops. For the ring
A = R,Q or Z, we denote by C0(G,A) the A-module of all functions f : V → A and by
C1(G,A) the A-module of all the functions g : E → A that verify g(e) = − g(e) for every
oriented edge e of E. Clearly, C0(G,A) = AV . Also, the choice of an orientation for G gives
an isomorphism C1(G, ,A) ' AE. The cochain complex C∗(G,A) : C0(G,A)

d−→ C1(G,A)
is such that the differential d sends f ∈ C0(G,A) to d(f) defined by

d(f)(e) := duvf := f(v)− f(u) ∀ e = uv ∈ E.
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Similarly, we have the free A-module C0(G,A) generated by the set of vertices V , with
generators denoted by (v) for v ∈ V , and the A-module C1(G,A), which is the quotient of
the free A-module generated by the oriented edges of G by the submodule generated by
elements of the form (e) + (e) for each oriented edge e ∈ E, where (e) denotes the element
associated to e both in the free module and in the quotient. As before, C0(G,A) ' AV ,
whereas C1(G,A) ' AE under the choice of an orientation. We have the chain complex
C∗(G,A) : C1(G,A)

∂−→ C0(G,A), where the boundary map ∂ is defined by

∂(e) := (v)− (u) ∀ e = uv ∈ E.

The spaces Ci(G,A) and Ci(G,A) are canonically dual for i = 0, 1. More precisely, there
are unique natural scalar products 〈 , 〉 on C0(G,A) and C1(G,A) satisfying 〈(u), (v)〉 = δu,v
for all pairs of vertices u, v ∈ V , and

〈(e), (e′)〉 =

{
±1 if (e′) = ±(e),

0 otherwise

for all pairs of oriented edges e, e′ ∈ E. These pairings naturally identify the space Ci(G,A)
with Ci(G,A), for i = 0, 1, in such a way that the adjoint d∗ of d gets identified with ∂.
We have ∂ ◦ d = d∗ ◦ d = ∆, where ∆ is the Laplacian of the finite graph G, defined by

∆(f)(v) =
∑
e∈E
he=v

(
f(v)− f(te)

)
∀ f ∈ C0(G,A) ,∀ v ∈ V (G).

Because of the identification, we deliberately use αe to denote the value of α ∈ C1(G,A)
at e ∈ E. Note that αe = −αe for each e ∈ E.

Consider now the lattice C1(G,Z) ⊂ C1(G,R) that upon the choice of an orientation for
the edges of G we can identify with the lattice ZE ⊂ RE. In this case, the scalar product
defined above becomes the natural Euclidean norm on RE. The Voronoi decomposition of
C1(G,Z) ⊂ C1(G,R) with respect to the norm ‖ ‖ associated to 〈 , 〉 is thus identified with
the standard tiling of RE by hypercubes �α indexed by vectors α ∈ ZE and defined by

�α :=
{
x ∈ RE

∣∣∣ ‖x− α‖∞ ≤ 1

2

}
, where ‖x− α‖∞ := max

e∈E
|xe − αe|.

3.2. Lattice of integer cuts and the Laplacian lattice. Let A be a ring. The sub-
module FA of C1(G,A) is defined by the image of d:

FA := d
(
C0(G,A)

)
⊆ C1(G,A).

For a subset C ⊂ V , we recall that the characteristic function χ
C
∈ C0(G,A) of C takes

value one at each v ∈ C and zero elsewhere. Since any function f ∈ C0(G,A) can be
written as

f =
∑
v∈V

f(v)χv ,

it follows that FA is generated by all the functions of the form d(χ
C

) for C ⊂ V . In fact,
we have the following result.
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Proposition 3.1. Let G = (V,E) be a finite connected graph without loops, and let S ⊂ V
be a subset of cardinality |V | − 1. Then FA is a free A-module of rank |V | − 1 and the
elements d(χv) for v ∈ S form a basis of FA.

Proof. Since
∑

v∈V d(χv) = 0, and since FA is generated by d(χv) for v ∈ V , the set of
elements d(χv) for v ∈ S generate FA. In addition, these are linearly independent. In fact,
a f ∈ C0(G,A) is in the kernel of d if and only if f(u) = f(v) for all oriented edges e = uv
in E(G), whence if and only if f is a constant function by connectedness of G. Thus, if
f =

∑
v∈V avχv then d(f) = 0 if and only if au = av for each u, v ∈ V . In particular, since

S 6= V , we have ∑
v∈S

avd(χv) = 0 if and only if av = 0 for all v ∈ S.

�

Definition 3.2. Let C1 and C2 be disjoint subsets of V . Let E(C1, C2) denote the set of
all the edges of G between a vertex of C1 and a vertex of C2, and by E(C1, C2) the set of all
the oriented edges from a vertex of C1 to a vertex of C2. For a subset C of V , its edge cut
is E(C, V − C), and its oriented edge cut is E(C, V − C). If there is no risk of confusion,
we drop the word “edge” and simply use “cut” and “oriented cut” when referring to these
two edge sets.

Note that we have

d(χ
C

)(e) :=


−1 if e ∈ E(C, V − C),

1 if e ∈ E(C, V − C),
0 otherwise.

In other words, d(χ
C

) is the characteristic function of the oriented cut E(V − C,C) in
C1(G,A): We have

d(χ
C

) =
∑

e∈E(V−C,C)

(
χe − χe

)
,

where for an oriented edge e ∈ E, χe is the characteristic function of e taking value 1 on e
and value zero on every other oriented edge.

The following well-known result states that FA is the subspace of C1(G,A) orthogonal
to the first graph homology H1(G,A) := ker(∂) ⊆ C1(G,A). We provide a proof for the
sake of completeness.

Proposition 3.3. Let µ ∈ C1(G,A). Then µ ∈ FA if and only if
∑

e∈γ µe = 0 for each
oriented cycle γ of G.

Proof. For each oriented cycle γ and v ∈ V , we have∑
e∈γ

d(χv)e = d(χv)e+ + d(χv)e− = −1 + 1 = 0,
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where e+ (resp. e−) is the edge of γ with tail (resp. head) v if v ∈ γ. If v 6∈ γ the sum is also
zero. The “only if” statement follows. Conversely, let µ ∈ C1(G,A) such that

∑
e∈γ µe = 0

for each oriented cycle γ. Fix v0 ∈ V . For each v ∈ V , take an oriented path P from v0 to
v and define

f(v) :=
∑
e∈E(P )

µe.

Note that f(v) is independent of the choice of P : Indeed, for each other oriented path P ′

from v0 to v, P ′ − P can be decomposed as as a sum of oriented cycles in G, and thus∑
e∈P

µe −
∑
e∈P ′

µe = 0.

This gives a function f ∈ C0(G,A) that verifies d(f) = µ. �

Definition 3.4 (Cut lattice). Let G be a connected graph without loops. The lattice of
integer cuts, or simply the cut lattice, of G is the lattice FZ ⊂ FR. The space FR is called
the cut space of G and an element of FZ of the form d(χ

C
) for a subset C ⊂ V is called a

cut element.

Note that the cut lattice and cut space live in C1(G,A) for A = Z and R, respectively.
We can use the operator d∗ to bring them down into C0(G,A).

Definition 3.5. For each ring A, we denote by ΛA and H0,A the submodules of C0(G,A)
defined by

ΛA :=d∗
(
FA
)
⊆ C0(G,A),

H0,A :=
{
f ∈ C0(G,A)

∣∣∣∑
v∈V

f(v) = 0
}
.

Proposition 3.6. We have ΛA ⊆ H0,A. In addition, d∗ restricts to an isomorphism from
FA onto ΛA.

Proof. Since
∑

v∈V f(v) =< f,
∑

v∈V χv > and d(
∑

v∈V χv) = 0, the first statement follows
from the fact that Im(d∗) = ker(d)⊥. The second statement follows from the fact that
C1(G,A) = Im(d)⊕ ker(d∗). �

Definition 3.7 (Laplacian lattice). The sublattice ΛZ ⊆ H0,Z is called the Laplacian
lattice.

In general, the inclusion ΛZ ⊆ H0,Z can be strict. In fact, we have the following propo-
sition which characterizes trees as the only connected graphs for which the equality holds.

Proposition 3.8 (Kirchhoff’s matrix-tree theorem). The index of ΛZ in H0,Z is equal to
the number of spanning trees of G.

Let f : V → R. By definition,

‖d(f)‖2 = 〈d(f), d(f)〉 = 〈f, d∗d(f)〉 = 〈f,∆(f)〉,
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where, as before, ∆ is the Laplacian of G. So d∗ induces an isomorphism (FR, ‖‖) ' (ΛR, q),
where q is the quadratic form on ΛR = H0,R induced by ∆, that is

Definition 3.9 (Quadratic form q on H0,R). For each h ∈ H0,R, define q(h) := 〈f,∆(f)〉
for any element f ∈ C0(G,R) with ∆(f) = h.

Definition 3.10 (Voronoi decomposition of the Laplacian lattice). The Voronoi decom-
position of (ΛR, q) induced by the sublattice ΛZ is denoted by Vor∆(Λ) := Vorq(ΛZ)

Remark 3.11. We observe that this decomposition is usually different from the decompo-
sition of H0,R equipped with the restriction of the Euclidean norm of C0(G,R) and induced
by the integer lattice H0,Z (or by ΛZ).

From the preceding discussions, it follows that the Voronoi decomposition Vor‖.‖(FZ) of
(FR, ‖.‖) induced by the cut lattice FZ is isomorphic to Vor∆(ΛZ).

Our aim in this section is to provide a detailed description of the Voronoi decomposition
of FR with respect to FZ. As a consequence, we will provide a complete description of
the union of hypercubes

⋃
β∈FZ

�β in C1(G,R) in terms of this Voronoi decomposition.
Only later, in the next two sections, will we generalize the results to the case of a graph G
equipped with an integer valued length function and the G-admissible setting of the last
section.

We start by giving the following basic characterization of the Voronoi cells in FR.

Proposition 3.12. Let β ∈ FZ. A point of FR of the form β + η for η ∈ FR belongs to the
β-centered Voronoi cell VorF (β) of Vor‖.‖(FZ) if and only if it satisfies the following set of
inequalities:

(3.1) For every subset S ⊆ V ,

−1

2
|E(S, V − S)| ≤

∑
e∈E(S,V−S)

ηe ≤
1

2
|E(S, V − S)|.

Proof. If β + η ∈ VorF (β), then, for each S ⊆ V , since β ± d(χ
S

) ∈ FZ, we must have
‖η‖2 ≤ ‖η ± d(χ

S
)‖2, from which Inequality (3.1) follows for S.

Suppose now that an element η ∈ FR verifies the above set of inequalities for subsets
S ⊆ V . We need to prove that ‖η − d(f)‖2 ≥ ‖η‖2 for each f ∈ C0(G,Z). For such f ,
denote by n1 < n2 < · · · < nr all the values it takes. Without loss of generality, since
d(f) = d(f +χ

V
), we may assume that nr ≤ 0. Set nr+1 := 0. For each i = 1, . . . , r, define

the subset Si ⊆ V by Si :=
⋃i
j=1 f

−1(nj). Then f =
∑r

j=1(nj − nj+1)χ
Sj
, which gives

d(f) =
r∑
j=1

(nj − nj+1)d(χ
Sj

) =
r∑
j=1

(nj+1 − nj)χE(S
j
,V−S

j
)
.

Here χE(S
j
,V−S

j
)
is the characteristic function of the oriented cut E(S

j
, V −S

j
) in C1(G,R).
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Note that we have

〈d(χ
Sj

), d(χ
Sk

)〉 =
∣∣∣E(Sj, V − Sj) ∩ E(Sk, V − Sk)

∣∣∣ ≥ 0

for each j, k = 1, . . . , r. This gives

‖η − d(f)‖2 − ‖η‖2 ≥
r∑
j=1

(
(nj+1 − nj)2 ‖d(χ

Sj
)‖2 − 2(nj+1 − nj)(

∑
e∈E(Sj ,V−Sj)

ηe)
)

Applying Inequality (3.1) to each Sj, we have

(nj+1 − nj)2 ‖d(χ
Sj

)‖2 = (nj+1 − nj)2|E(Sj, V − Sj)|

≥ (nj+1 − nj)|E(Sj, V − Sj)|

≥ 2(nj+1 − nj)(
∑

e∈E(Sj ,V−Sj)

ηe),

which shows that ‖η−d(f)‖2−‖η‖2 ≥ 0. Since this holds for every f ∈ C0(G,Z), we have
β + η ∈ VorF (β). �

It will be convenient for what follows to make the following definition.

Definition 3.13. For each subset A ⊆ FZ, we denote by �A the closed subset of C1(G,R)
defined by �A :=

⋃
α∈A�α.

3.3. The projection map from �FZ to Vor∆(Λ). Consider the orthogonal decomposition
of C1(G,R) = im(d) ⊕ ker(d∗). The orthogonal projection πF : C1(G,R) → FR = im(d)
restricts to a map �FZ → FR, that composed with d∗ yields the map �FZ → ΛR, which is
a restriction of d∗. If there is no risk of confusion, we denote by π the projection map πF .
We have the following theorem.

Theorem 3.14. The following statements hold true:
(i) For each β ∈ FZ, the map d∗ restricts to a linear projection from �β onto the

Voronoi cell Vor∆(d∗(β)). In addition, d∗ maps the interior of �β onto the interior
of Vor∆(d∗(β)).

(ii) (d∗)−1(Vor∆(d∗(β))) ∩�FZ = �β.
(iii) All the fibers of d∗ : �FZ → ΛR are compact and contractible. In particular, �FZ is

contractible.
(iv) The dual complexes of �FZ and Vor∆(Λ) are isomorphic.

Later on, in Theorem 3.44, we will in fact give a more refined statement. Note that
in (iv), the dual complex of �FZ (resp. Vor∆(Λ)) refers to the (combinatorial) Delaunay
dual complex and means the simplicial complex with the vertex set FZ (resp ΛZ) and
with simplices consisting of all subsets S ⊂ FZ (resp. S ⊂ ΛZ) such that the intersection⋂
β∈S �β (resp.

⋂
β∈S Vor∆(β)) is non-empty.
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The rest of this subsection is devoted to the proof of this theorem. Since d∗ : (FR, ‖.‖)→
(ΛR, q) is an isometry which maps FZ to ΛZ, it will be enough to prove the first three state-
ments for the projection map πF : �FZ → FR. The last one is then a direct consequence.

Let f ∈ C0(G,Z) and β := d(f) ∈ FZ. A point x ∈ �β is of the form β + µ, where for
each e ∈ E the coordinate µe of µ verifies |µe| ≤ 1

2
, that is, ‖µ‖∞ ≤ 1

2
. In addition, we have

the strict inequality ‖µ‖∞ < 1
2
if and only if the point x belongs to the relative interior of

�β.

Lemma 3.15. Notations as above, for each h ∈ C0(G,Z) we have

‖πF (µ)‖ ≤ ‖d(f − h) + πF (µ)‖.

The inequality is strict for each h with d(h) 6= β, provided that ‖µ‖∞ < 1
2
.

Proof. We have
‖πF (µ)‖2 = ‖µ‖2 − ‖µ− πF (µ)‖2,

and similarly,

‖d(f − h) + πF (µ)‖2 = ‖d(f − h) + µ‖2 − ‖µ− πF (µ)‖2.

So, in order to prove the first statement of the lemma, it will be enough to show that

∀h ∈ C0(G,Z), ‖µ‖2 ≤ ‖d(f − h) + µ‖2.

Now, for each oriented edge e = uv in E, since duv(f − h) ∈ Z and |µe| ≤ 1
2
, we have

|µe| ≤ |duv(f − h) + µe|, from which the inequality in the lemma follows. In addition, we
observe that the inequality is strict provided that the inequality |µe| ≤ |duv(f − h) + µe| is
strict for at least one oriented edge e = uv in E.

Suppose now that h ∈ C0(G,Z) satisfies d(h) 6= β, and ‖µ‖∞ < 1
2
. Since d(h) 6=

β = d(f), there exists at least one edge e = uv with duv(f − h) 6= 0, and so we have
|µe| < |duv(f − g) + µe|, given that |µe| < 1

2
. Therefore, we get

‖πF (µ)‖ < ‖d(f − h) + πF (µ)‖.

�

Proof of Theorem 3.14(i). From Lemma 3.15 we get directly that πF
(
�β

)
⊆ VorF (β), and

that πF maps the interior of the hypercube �β into the interior of VorF (β).
We prove now the surjectivity of the projection map πF : �β → VorF (β). By Proposi-

tion 3.12, a point of VorF (β) is of the form β + η for η ∈ FR satisfying the following set of
inequalities:

(3.2) ∀S ⊆ V, −1

2
|E(S, V − S)| ≤

∑
e∈E(S,V−S)

ηe ≤
1

2
|E(S, V − S)| .

We want to prove the existence of µ ∈ C1(G,R) with ‖µ‖∞ ≤ 1
2
and πF (µ) = η. Since the

result is trivial for η = 0, we may suppose that η 6= 0. We prove this using the max-flow
min-cut theorem in graph theory, cf. [Bol98, Chapter III] or [BM08, Chapter 7].
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Let h := −d∗(η). Thus h(v) =
∑

e : te=v ηe for each vertex v. Let X be the set of vertices
with h(v) ≥ 0, and Y its complementary. Since η ∈ im(d) and η 6= 0, we have d∗(η) 6= 0.
It follows that X, Y 6= ∅.

Now, add a new vertex s, called source, and another new vertex t, called target, to G,
and add new oriented edges sv for all v ∈ X and ut for all u ∈ Y to obtain a new directed
graph G̃. Define the capacity c(sv) of sv as h(v), the capacity c(ut) of ut as −h(u), and
the capacity c(e) of all the oriented edges e ∈ E as 1

2
. By the max-flow min-cut theorem,

the maximum amount of a flow from the source s to the target t in the corresponding
network is equal to the minimum capacity of a cut separating s from t in G̃. Recall that
the capacity of a cut S is the sum of the values of c over all the edges with one end-point
in S and another end-point out of S.

Let S be a cut with s ∈ S and t 6∈ S. Write S = {s} t C with C = A t B, for A ⊆ X
and B ⊆ Y . Then the capacity of S is given by

c(S) = h(X − A)− h(B) +
1

2
|E(C, V − C)|,

where h(D) :=
∑

v∈D h(v) for each D ⊆ V . We claim that for each such cut S, we have
c(S) ≥ c({s}) =

∑
v∈X h(v). Indeed, writing c({s}) = h(A) + h(X − A), this amounts to

showing that

(3.3) h(A) + h(B) ≤ 1

2
|E(C, V − C)|.

Note that by definition,

h(A) =
∑
v∈A

h(v) =
∑
v∈A

∑
e : te=v

ηe =
∑

e∈E(A,V−A)

ηe.

(For e = vu with v, u ∈ A, we have ηe + ηe = 0.) Similarly, we have

h(B) =
∑
w∈B

h(w) =
∑
w∈B

∑
e : te=w

ηe =
∑

e∈E(B,V−B)

ηe.

It follows that
h(A) + h(B) =

∑
e∈E(C,V−C)

ηe,

so that Inequality (3.3) is precisely (3.2) applied to the cut C.
What we have proved so far shows that the maximum flow α in G̃ with the capacity

function c on edges is precisely c({s}), and thus α uses maximum allowed capacity on each
edge sv and each edge ut. The restriction of α to E(G) satisfies

0 ≤ α(e) ≤ 1
2
for every e ∈ E(G), and

For each vertex v ∈ V ,
∑

e : te=v α(e)− α(e) = h(v).
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Define now µ(e) := α(e) − α(e) for each e ∈ E(G). Note that µ(e) = −µ(e) for each
e ∈ E(G), and so µ ∈ C1(G,R). It follows from the first equation above that ‖µ‖∞ ≤ 1

2
.

In addition, for each vertex v ∈ V , we have
∑

e : te=v µ(e) = h(v) =
∑

e : te=v η(e), which
shows that µ − η ∈ ker(d∗). Since η ∈ im(d), we finally conclude that πF (µ) = η, which
proves the surjectivity.

Since πF maps two different hypercubes onto two different Voronoi cells, surjectivity of
πF : �FZ → FR implies that the interior of a hypercube �β is projected onto the relative
interior of VorF (β) for each β ∈ FZ, and Part (i) follows. �

Proof of Theorem 3.14(ii). Let α ∈ �FZ such that πF (α) ∈ VorF (β). By (i), there is
µ ∈ C1(G,R) with ‖µ‖∞ ≤ 1

2
such that πF (α) = πF (β + µ). Let η := α − β − µ. Then

d∗(η) = 0. Since α = β + η + µ, in order to prove the statement in the theorem, we need
to show that ‖η + µ‖∞ ≤ 1

2
.

Now, by assumption, α ∈ �FZ and so there is β′ ∈ FZ such that α ∈ �β′ . Set β′′ = β′−β.
Then ‖η + µ− β′′‖∞ = ‖α− β′‖∞ ≤ 1

2
. We prove ‖η + µ‖∞ ≤ 1

2
by showing that for each

oriented edge e ∈ E, either ηe = 0 or β′′e = 0. This implies the result since in the first case
we get |ηe + µe| = |µe| ≤ 1

2
, and in the second case we get |ηe + µe| = |ηe + µe − β′′e | ≤ 1

2
.

To prove the claim, note that since ‖µ‖∞ ≤ 1
2
and ‖η+µ−β′′‖∞ ≤ 1

2
, we have |ηe−β′′e | ≤ 1

for each e ∈ E. Since β′′e ∈ Z, we have

(3.4) (β′′e )2 + (ηe − β′′e )β′′e ≥ 0

for every e ∈ E. But
〈β′′, β′′〉+ 〈η − β′′, β′′〉 = 〈η, β′′〉 = 0

because d∗(η) = 0 and β′′ ∈ im(d). Thus equality holds in (3.4) for every e ∈ E, which
implies ηeβ′′e = 0 and the claim follows. �

Proof of Theorem 3.14(iii). Since πF is a linear projection map, the fibers are all convex,
thus contractible. They are all closed and bounded since each is included in a hypercube
of the form �β for some β ∈ FZ, by (ii). The projection map πF : �FZ → FR has closed
convex fibers, so �FZ is contractible. �

Proof of Theorem 3.14(iv). This last assertion is a direct consequence of (i) and (iii). �

3.4. The combinatorics of the Voronoi decomposition Vor‖.‖(FZ) ' Vor∆(Λ). Con-
sider the Voronoi decomposition Vor(FZ) of the lattice FZ in FR under the natural distance
defined by ‖.‖ and let VorF (β) be the Voronoi cell of the lattice element β ∈ FZ. Denote
by FP the face poset of the polytope VorF (O), where O is the point of origin in FZ. Recall
that, as a set, FP consists of all the faces of VorF (O), and the partial order is defined
by the inclusion between faces. In this section, we give a combinatorial description of this
poset in terms of a particular class of orientations of subgraphs of G.

Recall that by a spanning subgraph G′ of G we mean a subgraph with V (G′) = V (G).
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Definition 3.16 (Cut subgraph). A spanning subgraph G′ of G is called a cut subgraph
if there exists an integer s and a partition V1, . . . , Vs of V such that G′ is the graph
obtained from G by deleting all the edges which lie in any one of the Vi, i.e., if E(G′) =
E(G)−

⋃s
i=1E(Vi).

Recall that an orientation D of a graph G is called acyclic if D does not contain any
oriented cycle.

Definition 3.17 (Coherent acyclic orientations of subgraphs). An orientation D of a
subgraph G′ of G is called coherent acyclic if there exists a partition V1, . . . , Vs of V (G)
such that

- G′ is the cut subgraph of G obtained by removing all the edges which lie in any of
the Vi, and

- the orientation D is that defined by the linear order 1 < · · · < s, i.e., all the edges
between Vi and Vj for i < j are oriented from Vi to Vj.

We shall view a coherent acyclic orientation D as a subset E(D) ⊆ E. Denote by CAC
the set consisting of all coherent acyclic orientations of all cut subgraphs of G.

Definition 3.18 (Poset structure of CAC). We define the following partial order on CAC.
For two elements D1 and D2 of CAC, we say D1 � D2 if E(D2) ⊆ E(D1). We call the poset
CAC the poset of coherent acyclic orientations of cut subgraphs of G.

The main theorem of this section is the following:

Theorem 3.19. The face poset FP of VorF (O) is isomorphic to the poset CAC of coherent
acyclic orientations of cut subgraphs of G.

The rest of this section is devoted to the proof of Theorem 3.19.

Definition 3.20 (Positive support). For an element x ∈ C1(G,R), the positive support of
x, denoted supp+(x), is the set of all oriented edges e ∈ E with xe > 0.

Let x ∈ FR and f ∈ C0(G,R) with x = d(f). Denote by a1 < · · · < as all the different
values taken by f , and define the level sets Vi = f−1(ai). By definition of d(f), the positive
support of x is the coherent acyclic orientation defined by the ordered partition V1, . . . , Vs
of V . In addition, all the elements of CAC are of this form, so:

Proposition 3.21. CAC = {supp+(x) |x ∈ FR}.

3.4.1. Intersecting Voronoi cells. We characterize first the intersecting Voronoi cells in the
Voronoi decomposition of FR induced by the lattice FZ. We need the following definition.

Definition 3.22 (Generalized cut). A generalized cut C in G is an ordered partition of the
vertex set V into sets V1, . . . , Vs for s ≥ 2 such that there is no edge between Vi and Vj if
|i− j| ≥ 2, or in other words, such that all the crossing edges between the Vi are between
consecutive Vj and Vj+1 for j = 1, . . . , s − 1. We denote by E(C) the set consisting of all
the oriented edges with tail in Vi and head in Vi+1 for any i = 1, . . . , s− 1.
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Definition 3.23 (Generalized cut elements of FZ). Let C be a generalized cut of G with
ordered partition V1, . . . , Vs. The characteristic function of C is the function χ

C
∈ C0(G,Z)

which takes value i on Vi. An element β of FZ is called a generalized cut element if it is of
the form d(χC) for a generalized cut C in G.

We have the following characterization of generalized cut elements.

Proposition 3.24. A β ∈ FZ is a generalized cut element if and only if ‖β‖∞ ≤ 1.

Proof. For a generalized cut element, we obviously have ‖β‖∞ ≤ 1. To prove the reverse
implication, let f ∈ C0(G,Z) with β = d(f), and let V1, . . . , Vs be the partition of V given
by the level sets of f , that is, Vi := f−1(ai) for each i, where a1 < · · · < as are all the
values taken by f . Since ‖β‖∞ ≤ 1 and a1, . . . , as ∈ Z, the ordered partition V1, . . . , Vs
defines a generalized cut C of G, and we have ai+1 − ai = 1 for each i = 1, . . . , s − 1. It
follows that f = χ

C
+ a1 − 1, and thus β = d(χ

C
). �

Remark 3.25. Note that the ordered partition underlying a generalized cut C is uniquely
determined by E(C). Indeed, we have β = d(χC) for β the element of FZ which takes value
one on each oriented edge in E(C), and takes value zero on oriented edges e with neither
e nor e in E(C). This shows that the characteristic function of the generalized cut χC is
uniquely determined, and thus so is the ordered partition.

We can now state the following characterization of intersecting Voronoi cells.

Lemma 3.26 (Intersecting Voronoi Cells). The Voronoi cell VorF (β) for β ∈ FZ intersects
the Voronoi cell VorF (O) of the origin if and only if β is a generalized cut element of FZ.
More generally, given β, λ ∈ FZ, we have that VorF (β) ∩ VorF (λ) 6= ∅ if and only if β − λ
is a generalized cut element.

Before going through the proof, we first recall a basic useful property of Voronoi decom-
positions defined by lattices.

Proposition 3.27. For β ∈ FZ, the following two conditions are equivalent:
• The two Voronoi cells VorF (β) and VorF (O) intersect.
• β/2 ∈ VorF (β) ∩ VorF (O).

Proof. One direction is obvious. To prove the other direction, suppose VorF (O)∩VorF (β)
is not empty, and suppose for the sake of contradiction that β/2 /∈ VorF (β) ∩ VorF (O).
Then there exists µ ∈ FZ such that ‖µ − β/2‖ < ‖β/2‖, or equivalently, 〈β − µ, µ〉 > 0.
Consider the four lattice points O, β, µ and β−µ, and take a point x ∈ VorF (O)∩VorF (β).
By assumption ‖x‖ = ‖x− β‖, which gives 2〈x, β〉 = ‖β‖2. Since ‖x‖ ≤ ‖x− µ‖, we have
2〈x, µ〉 ≤ ‖µ‖2. Combining these two, we get

2〈x, β − µ〉 ≥ ‖β‖2 − ‖µ‖2 = ‖β − µ‖2 + 2〈β − µ, µ〉 > ‖β − µ‖2.

This shows that ‖x‖2 > ‖x− β +µ‖2, which contradicts the assumption x ∈ VorF (O). �
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Proof of Lemma 3.26. The Voronoi cells VorF (O) and VorF (β) intersect if and only if β/2 ∈
VorF (O) ∩ VorF (β), or equivalently, if and only if ‖β/2‖ ≤ ‖β/2 − µ‖ for every µ ∈ FZ,
that is, 〈β, µ〉 ≤ ‖µ‖2 for every µ ∈ FZ.

For a generalized cut element β, we have |βe| ≤ 1 for all e ∈ E. In particular, for µ ∈ FZ,
we have 〈β, µ〉 ≤

∑
e∈E |µe| ≤

∑
e∈E µ

2
e = ‖µ‖2. This shows that VorF (β) ∩ VorF (O) 6= ∅.

This proves one direction of the lemma.
To prove the other direction, suppose VorF (β) ∩ VorF (O) 6= ∅. Let D = supp+(β).

Proposition 3.21 asserts that D is a coherent acyclic orientation, defined by a certain
ordered partition V1, . . . , Vs of V . Notice that βe = 0 for each e ∈ E inside one of the Vi.
Furthermore, for each i = 1, . . . , s, let Ci = V1 ∪ V2 ∪ · · · ∪ Vi and µi := −d(χ

Ci
). Since

E(Ci, V − Ci) ⊂ D, and the βe are all integers, we must have

〈β, µi〉 =
∑

e∈E(Ci,V−Ci)

βe ≥ |E(Ci, V − Ci)| = ‖µi‖2.

But the reverse inequality holds as well, as VorF (O) and VorF (β) intersect. Thus, equality
holds, yielding that βe = 1 for every e ∈ E(Ci, V − Ci). Therefore, ‖β‖∞ ≤ 1, and hence
β is a generalized cut element by Proposition 3.24.

The last assertion follows from the translation invariance property of the Voronoi de-
composition. �

3.4.2. Rank of a generalized cut. Let G be a connected graph without loops. For each
C ⊆ V denote by G[C] the induced subgraph of G with vertex set C, meaning that the
edges in G[C] are those connecting two vertices of C.

Let C be a generalized cut in G given by an ordered partition V1, . . . , Vs of the vertex
set V and with the set of oriented edges E(C). We define the rank κ(C) of C as follows.

For each i = 1, . . . , s − 1, let Ci := V1 ∪ · · · ∪ Vi and Si := Vi+1 ∪ · · · ∪ Vs, and de-
note by Ci,1, . . . , Ci,li and Si,1, . . . , Si,ri all the connected components of G[Ci] and G[Si],
respectively.

Definition 3.28. The rank of C, denoted κ(C), is defined by κ(C) :=
∑s−1

i=1 (li + ri − 1).

Definition 3.29 (Bond). A bond in G is a generalized cut C with κ(C) = 1. An element
λ ∈ FZ is called a bond if it is of the form d(χ

C
) for C ⊂ V such that the cut defined by

C is a bond. We denote by Υ1 the set of all bond elements of FZ.

Proposition 3.30. The following three conditions are equivalent for each generalized cut
C:

(1) C is a bond.
(2) C is given by an ordered partition V1, V2 of V such that G[V1] and G[V2] are both

connected.
(3) There is no non-empty cut E(C, V − C) in G properly contained in E(C).

Proof. Let C be a generalized cut. We retain the terminology as in the paragraph preceding
Definition 3.28, so C is given by an ordered partition V1, . . . , Vs of V .
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Suppose (1) holds, so κ(C) = 1. Since all the terms li + ri − 1 in the definition of κ(C)
are at least 1 for each i = 1, . . . , s − 1, we must have s = 2 and l1 = r1 = 1. Thus (1)
implies (2).

We prove now that (2) implies (3). Suppose C is given by the ordered partition V1, V2

with G[V1] and G[V2] connected. Let C ( V be a proper non-empty subset of V such
that E(C, V − C) ⊂ E(V1, V2). Then C ∩ V1 6= ∅. Moreover, since G[V1] is connected,
we must have V1 ⊆ C, because otherwise E(C, V − C) would contain the non-empty set
E(C∩V1, V1−C∩V1), which is disjoint from E(V1, V2), clearly not possible. Similarly, since
G[V2] is connected, V2 ⊆ V − C. It follows that C = V1, and hence E(C, V − C) = E(C).

Finally, to prove (3) implies (1) note that all the cuts of the form E(C1,j, V − C1,j), for
j = 1, . . . , l1, are included in E(C). This proves s = 2 and `1 = 1. By a similar reasoning,
the cuts of the form E(V − S1,j, S1,j) are included in E(C). This proves r1 = 1, and the
result follows. �

While not needed in the sequel, we state the following result which gives lower and upper
bounds on the rank function.

Proposition 3.31. Notations as above, let C be a generalized cut with underlying ordered
partition V1, . . . , Vs. We have

s− 1 ≤ κ(C) ≤
s∑
j=1

cj − 1

where cj denotes the number of connected components of the induced subgraph G[Vj] for
j = 1, . . . , s.

Proof. The inequality on the left follows from the observation that lj+rj−1 ≥ 1 for each j.
To prove the inequality on the right, consider the graph H obtained from G by contracting
every edge of G with both extremities in Vj for every j = 1, . . . , s. The quantity

∑s
j=1 cj

coincides then with the number of vertices of H. Now, removing edges from G can only
result in a possible increase in the value of κ(C). Let G′ be a subgraph of G obtained
by removing some of the edges crossing between the parts of the partition such that the
resulting subgraph H ′ of H obtained after contraction of edges within the Vj is a tree. For
the graph G′, the corresponding quantity l′j + r′j − 1 is precisely the number of edges of G′

between Cj and Sj. Thus, we get

κ(C) ≤
s−1∑
j=1

(l′j + r′j − 1) = |E(H ′)| = |V (H ′)| − 1 =
s∑
j=1

cj − 1.

In the above equation, the first equality follows from C being a generalized cut, which
implies that each edge of E(H ′) is counted exactly once in the sum on the left-hand side,
and the second equality follows from H ′ being a tree. �
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3.4.3. Description of the codimension one faces of FP. Let σ be a face of VorF (O) con-
tained in another Voronoi cell VorF (β). By Lemma 3.26, we have β = d(χ

C
) for a gener-

alized cut C in G.

Lemma 3.32. Let β := d(χ
C
) for a generalized cut C in G. Then the intersection

VorF (O) ∩ VorF (β) is contained in an affine subspace of FR of codimension κ(C). In
particular, if σ is a facet of VorF (O) in VorF (O) ∩ VorF (β), then κ(C) = 1, and so C is a
bond in G.

Proof. A point x in the intersection VorF (O) ∩ VorF (β) is characterized by the following
two properties:

I. ‖x‖ = ‖x− β‖, or equivalently, 2〈x, β〉 = ‖β‖2.
II. 2〈x, µ〉 ≤ ‖µ‖2 for each µ ∈ FZ.

We start by making the following useful observation: Suppose we can express β =∑k
i=1 βi, where each βi is in FZ and satisfies the following two conditions:

(i) βi = d(χ
Xi

) for a cut Xi in V ,
(ii) supp+(βi) ⊆ supp+(β).

Then, since ‖β‖∞ ≤ 1, we have supp+(βi) ∩ supp+(βj) = ∅ for different indices i and j,
and so ‖β‖2 =

∑k
i=1 ‖βi‖2. Applying II to µ = βi for each i = 1, . . . , k, and using I, it

follows that 2〈x, βi〉 = ‖βi‖2 for each i = 1, . . . , k.
Assume now the generalized cut C is given by an ordered partition V1, . . . , Vs of V , for

s ≥ 2, and for each i = 1, . . . , s−1, let Ci,1, . . . , Ci,li and Si,1, . . . , Si,ri denote the connected
components of Ci = V1 ∪ · · · ∪ Vi and of Si = Vi+1 ∪ · · · ∪ Vs, respectively, as before. We
have the following equalities:

d(χ
C
) = −

s∑
i=1

d(χ
Ci

),

d(χ
Ci

) =

li∑
j=1

d(χ
Ci,j

), d(χ
Ci

) = −
ri∑
j=1

d(χ
Si,j

).

Then there exists a decomposition of the form β =
∑

h βh, where the βh are the −d(χ
Ci,j

)

ordered arbitrarily, verifying properties (i) and (ii) above. Similarly, there exists a decom-
position of the form β =

∑
h βh, where the βh are the d(χ

Si,j
) ordered arbitrarily, verifying

properties (i) and (ii). It follows from the observation we made above that, for each
i = 1, . . . , s− 1,

(∗) − 2〈x, d(χ
Ci,j

)〉 = ‖d(χ
Ci,j

)‖2 = |E(Ci,j, V − Ci,j|, for j = 1, . . . li and

2〈x, d(χ
Si,j

)〉 = ‖d(χ
Si,j

)‖2 = |E(V − Si,j, Si,j)|, for j = 1, . . . ri.

Now, for each i = 1, . . . , s − 1, the cut elements d(χ
Ci,k

) for k = 1, . . . , li and d(χ
Si,j

) for
j = 1, . . . , ri span a vector space Hi of dimension li + ri− 1, which is isomorphic to the cut
space of the connected graph on li + ri vertices obtained from G by contracting each of the
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subgraphs Ci,k and Si,j in G. In addition, for different i, j ∈ {1, . . . , s− 1}, the spaces Hi

and Hj are orthogonal. It follows that a point x satisfying all the equations in (*) above
must lie in an affine plane of codimension

∑s−1
i=1 (li + ri − 1). The lemma follows. �

Recall that Υ1 denotes the set of all the bond elements in FZ.

Proposition 3.33. The following statements are true:
(i) The bond elements form a system of generators of FZ.

(ii) There is a bijection between the bond elements β of FZ and the facets σ of VorF (O)
given by β 7→ σ := VorF (O) ∩ VorF (β).

(iii) The one-skeleton of the Delaunay dual of the Voronoi decomposition Vor‖.‖(FZ)
is isomorphic to Cay(FZ,Υ1), where Cay(FZ,Υ1) is the Cayley graph of FZ with
respect to the system of generators Υ1.

Proof. (i) The elements of the form d(χv) for v a vertex in V form a system of generators
for FZ. If G[V − v] consists of connected components Cv,1, . . . , Cv,k, then each element
d(χ

Cv,i
) is a bond, and we have d(χv) = −

∑
i d(χ

Cv,i
). This shows that the bond elements

form a system of generators.

(ii) We first prove that for any bond element β = d(χ
C

), for a subset ∅ ( C ( V , the
intersection VorF (β) ∩ VorF (O) has codimension one in VorF (O), which means it is of
dimension |V | − 2. As we have observed before, the intersection VorF (β) ∩ VorF (O) is
contained in the affine hyperplane 2〈x, β〉 = ‖β‖2 = |E(C, V − C)|.

Consider the two graphs G1 := G[C] and G2 := G[V − C]. By Proposition 3.30, they
are connected. For i = 1, 2, define Fi,R = im(d : C0(Gi,R) → C1(Gi,R)), and consider
the corresponding sublattice Fi,Z of full rank in Fi,R. Consider two points x1 and x2 in
the interior of the Voronoi cells VorF1(O) and VorF2(O) of the origin in F1,R and F2,R,
respectively. Extending by zero on the edges outside the edges of Gi, we can identify the
C1(Gi,R) as subspaces of C1(G,R), and thus make sense of F1,R +F2,R. We claim that the
point πF (x1 + x2) + 1

2
d(χ

C
) lies in the intersection VorF (O) ∩VorF (β). (Recall that πF is

the orthogonal projection to FR in the orthogonal decomposition C1(G,R) = FR⊕ker(d∗).)
To prove this, first note that since xi and β have disjoint support, we have 〈xi, β〉 = 0,

and so we get

‖β‖2 = 2〈x1 + x2 + β/2, β〉 = 2〈πF (x1 + x2) + β/2, β〉.
Thus, to prove the claim it will be enough to show that for any µ ∈ FZ,

2〈πF (x1 + x2) + β/2, µ〉 = 2〈x1 + x2 + β/2, µ〉 ≤ ‖µ‖2.

Each µ ∈ FZ is of the form d(f) for some f : V → Z with minv∈V f(v) = 0. Let N =
maxv∈V {f(v)}. We can write f = f1 + · · ·+ fN where each fi takes value 1 on f−1([i, N ])

and zero elsewhere. Then µ = d(f) =
∑N

i=1 d(fi) and
∑N

i=1 ‖d(fi)‖2 ≤ ‖µ‖2, so the
inequality 2〈x1 + x2 + β/2, µ〉 ≤ ‖µ‖2 will follow from the inequalities

∀X ⊂ V, 2〈x1 + x2 + β/2, d(χ
X

)〉 ≤ ‖d(χ
X

)‖2,
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that we prove now.
Consider X ⊂ V , and let Y := X ∩ C and Z := X ∩ V − C. We have

E(X, V −X) = E(Y,C − Y ) t E(Y, (V − C)− Z) t E(Z, (V − C)− Z) t E(Z,C − Y ).

Since x1 lies in the Voronoi cell of the origin in F1,R with respect to F1,Z, it follows from
Proposition 3.12 that

2
∑

e∈E(C−Y,Y )

x1(e) ≤ |E(Y,C − Y )|.

Analogously,
2

∑
e∈E((V−C)−Z,Z)

x2(e) ≤ |E(Z, (V − C)− Z)|.

On the other hand, for every e ∈ E(V −C,C), we have x1(e) + x2(e) + βe/2 = 1/2. These
all together show that

2〈x1 + x2 + β/2, d(χ
X

)〉 =2
∑

e∈E(C−Y,Y )

x1(e) + 2
∑

e∈E((V−C)−Z,Z)

x2(e)

+ |E(Y, (V − C)− Z)| − |E(Z,C − Y )|
≤|E(Y,C − Y )|+ |E(Z, (V − C)− Z)|

+ |E(Y, (V − C)− Z)| − |E(Z,C − Y )|
≤|E(X, V −X)| = ‖d(χ

X
)‖2,

and the claim follows.
Finally to show that VorF (β)∩VorF (O) has codimension one in VorF (O), note that the

points of the form πF (x1 + x2) + 1
2
d(χ

C
) for x1 and x2 in the interior of the Voronoi cells

VorF1(O) and VorF2(O), form an open set around β/2 in the affine hyperplane 2〈x, β〉 =
‖β‖2 = |E(C, V − C)|. Indeed, πF (x1 + x2) = d(h) where h is a solution of the equation
∆(h) = d∗(x1 + x2). Since ∆ : C0(G,R)/Rχ

V
→ H0,R is nondegenerate, and the points

d∗(x1 + x2) form an open subset of a hyperplane of H0,R (consisting of those f : V → R
with

∑
v∈C f(v) =

∑
v∈V−C f(v) = 0), the claim follows.

To conclude, it remains to show that the association β 7→ VorF (O)∩VorF (β) is bijective.
The surjectivity follows by applying Lemma 3.32, which shows that each facet of VorF (O)
is shared with the Voronoi cell of a bond of FZ. The injectivity follows from the fact that
VorF (O) ∩ VorF (β) spans the affine hyperplane 2〈x, β〉 = ‖β‖2, which determines β.

(iii) The last assertion follows from the definition of the Delaunay dual, and the classi-
fication of the facets of Voronoi cells in the Voronoi decomposition Vor‖.‖(FZ), given by
(ii). �

3.4.4. Local hyperplane arrangement defined by bonds. For each bond element β ∈ Υ1, let
Fβ be the hyperplane in FR defined by the equation

Fβ :=
{
x ∈ FR | 2〈x, β〉 = ‖β‖2

}
.
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More generally, for an arbitrary lattice point µ ∈ FZ and a bond element β ∈ Υ1, let Fµ,β
be the affine hyperplane µ + Fβ. It follows from Proposition 3.33 that for each µ ∈ FZ
the interior of the Voronoi cell VorF (µ) is the open cell containing µ of the hyperplane
arrangement given by the Fµ,β for β ∈ Υ1.

3.4.5. Definition of the map φ from FP to CAC. Each face f in the face poset FP of
Vor(O) is the intersection of some of the hyperplanes Fβ for β ∈ Υ1. This is the key to
defining φ : FP → CAC.

Proposition 3.34. For each α ∈ FZ there exist bond elements µ1, . . . , µk with supp+(µi) ⊂
supp+(α) such that α = µ1 + · · ·+ µk. In particular, ‖α‖2 =

∑
‖µi‖2.

Proof. Let f ∈ C0(G,Z) with α = d(f). We may suppose that min f = 0. Let N = max f .
For each i ∈ N let Si := f−1([i, N ]). Then f =

∑N
i=1 χSi

, and hence α =
∑N

i=1 d(χ
Si

). Since
supp+(d(χ

Si
)) ⊆ supp+(α) for every i, it is enough to prove the proposition for α = d(χ

S
)

for a subset S ⊂ V . If G[S] and G[V − S] are connected, then α is a bond element. If
G[S] is not connected, denoting by X1, . . . , Xr the connected components of G[S], we have
α =

∑
d(χ

Xi
) and supp+(d(χ

Xi
)) ⊆ supp+(d(χ

S
)) for each i. We may thus assume G[S]

is connected. Now, if G[V − S] is not connected, denoting by Y1, . . . , Yr the connected
components of G[V − S], we have

d(χ
S

) = −
∑

d(χYi) =
∑

d(χZi
),

where Zi := V −Yi for each i, and the d(χ
Zi

) are bond elements satisfying supp+(d(χ
Zi

)) ⊆
supp+(d(χ

S
)). �

Definition 3.35. For two elements λ and µ of C1(G,Z), we say that supp+(λ) and
supp+(µ) are consistent in their orientations if there is no oriented edge e ∈ E with
e ∈ supp+(λ) and e ∈ supp+(µ).

We have the following result.

Lemma 3.36. Let f be a face of VorF (O), and let λ and µ be two different bond elements of
Υ1 such that f ⊂ Fλ∩Fµ. Then supp+(λ) and supp+(µ) are consistent in their orientations.

Proof. Let Eλ = supp+(λ) and Eµ = supp+(µ), and for the sake of contradiction suppose
there exists an oriented edge e ∈ E with e ∈ Eλ and e ∈ Eµ. We claim that for each point
x in VorF (O)∩ Fλ ∩ Fµ (and so for each point x ∈ f), there exists an element β ∈ Υ1 with
‖x− β‖ < ‖x‖, which gives a contradiction.

Indeed, let x ∈ VorF (O) ∩ Fλ ∩ Fµ. We have

2〈x, λ〉 = ‖λ‖2 = |Eλ| and 2〈x, µ〉 = ‖µ‖2 = |Eµ|.

Thus we get

(3.5) 2〈x, λ+ µ〉 = |Eλ|+ |Eµ|.
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Let D = supp+(λ + µ). Observe that neither e nor e belongs to D and so the sum∑
f∈D λf +µf is strictly less than |Eλ|+ |Eµ|. On the other hand, by Proposition 3.34, the

element λ + µ can be written as a sum β1 + · · · + βk such that each βi is a bond element
of FZ and supp+(βi) ⊂ D. This shows that

(3.6)
∑
i

‖βi‖2 = ‖λ+ µ‖2 =
∑
e∈D

λe + µe < |Eλ|+ |Eµ|.

If 2〈x, βi〉 ≤ ‖βi‖2 for every i, then by summing up all these inequalities and applying
Inequality (3.6), we would have

(3.7) 2〈x, λ+ µ〉 =
∑
i

2〈x, βi〉 ≤
∑
i

‖βi‖2 < |Eλ|+ |Eµ|,

contradicting Equation (3.5). Thus, there exists an i such that 2〈x, βi〉 > ‖βi‖2, which
implies ‖x‖ > ‖x− βi‖, contradicting the assumption that x ∈ VorF (O). �

Let f be a face of VorF (O), and define

Uf := {β ∈ Υ1|f ⊂ Fβ}.

Definition 3.37. We define the map φ : FP → CAC by

∀ f ∈ FP , φ(f) :=
⋃
β∈Uf

supp+(β).

To see that the image of φ lies in CAC, note that by Lemma 3.36, φ(f) coincides with
supp+(

∑
β∈Uf β) which lies in CAC by Proposition 3.21. In addition, φ is clearly order

preserving, that is, a homomorphism of posets, as required in Theorem 3.19.
The following proposition characterizes Uf from φ(f).

Proposition 3.38. Let f be a face of FP. For every bond element β ∈ Υ1, we have
supp+(β) ⊆ φ(f) if and only if β ∈ Uf.

Proof. One direction is trivial by the definition of φ(f). Let β ∈ Υ1 be an element with
supp+(β) ⊆ φ(f). We need show that f ⊂ Fβ. Let µ =

∑
λ∈Uf λ. Since supp+(µ) = φ(f)

and supp+(β) ⊆ φ(f), we have that supp+(µ−β) ⊆ φ(f). Applying Proposition 3.34, there
exists a decomposition µ =

∑k
i=0 µi with µ0 = β and µi ∈ Υ1 with supp+(µi) ⊆ φ(f) for

each i. For each x ∈ f and λ ∈ Uf, we have

2〈x, λ〉 = ‖λ‖2 =
∑

e∈supp+(λ)

λ(e),

which shows that
2〈x, µ〉 =

∑
e∈supp+(µ)

µ(e).



34 OMID AMINI AND EDUARDO ESTEVES

On the other hand, since f ⊂ VorF (O), we have for each µi,

2〈x, µi〉 ≤ ‖µi‖2 =
∑

e∈supp+(µi)

µi(e).

Summing up all these inequalities, and using the fact that
∑k

i=0 µi(e) =
∑

λ∈Uf λ(e) = µ(e)

for every e ∈ E, we obtain that all the inequalities above are indeed equalities. This shows
that

2〈x, β〉 = 2〈x, µ0〉 = ‖µ0‖2 = ‖β‖2,

and thus β ∈ Uf. �

Let D be a coherent acyclic orientation of a cut subgraph of G. Let

UD :=
{
β ∈ Υ1 | supp+(β) ⊆ E(D)

}
,

and define
FD := ∩β∈UDFβ.

As a direct corollary of Proposition 3.38, we get:

Proposition 3.39. If D = φ(f) then UD = Uf and f = VorF (O) ∩ FD. In particular, φ is
injective.

Proof. That UD coincides with Uf is clear from their definitions and Proposition 3.38.
The equality f = VorF (O) ∩ FD follows now because f is the intersection of the facets
of VorF (O) containing it, and these facets are of the form VorF (O) ∩ Fβ for β ∈ Υ1 by
Proposition 3.33. �

3.4.6. Surjectivity of the map φ. In this section we prove the surjectivity of the map φ,
thus finishing the proof of Theorem 3.19.

Let D be a coherent acyclic orientation of a cut subgraph H of G.

Definition 3.40 (Codimension of a cut subgraph). The codimension of a cut subgraph H
of G, denoted codim(H), is by definition the number of connected components of G−E(H)
minus one. The codimension of a coherent acyclic orientation D of a cut subgraph H of
G, denoted codim(D), is defined by codim(D) := codim(H).

The terminology is justified by the following result.

Lemma 3.41. The following statements are true:
• codim(D) = |V | − 1 if and only if D is an acyclic orientation of the whole G.
• E(D) =

⋃
β∈UD supp+(β).

• The affine plane FD is of codimension codim(D) in FR.

Proof. If codim(D) = |V |−1 then G−E(H) has |V | connected components, which consists
thus of single vertices. It follows that E(H) = E(G) and thus D is an acyclic orientation of
the whole graph G. Conversely, if D is an acyclic orientation of the whole graph G then D
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is a coherent acyclic orientation of the cut subgraph obtained by partitioning completely
V (G), whence codim(D) = |V | − 1.

As for the second statement, let d := codim(D), and denote by C1, . . . , Cd+1 all the
connected components of G− E(D), ordered so that all the oriented edges of D are from
Ci to Cj for i < j.

Denote by βi the cut element of FZ associated to the cut Si = Ci+1 t · · · t Cd+1 for
i = 1, . . . , d. Clearly, E(D) = supp+(β1) ∪ · · · ∪ supp+(βd). By Proposition 3.34, we can
find a decomposition of βi as a sum of bond elements with positive support included in
E(D), i.e., as a sum of elements in UD. Thus the second statement follows.

Finally, denote by G̃ the multigraph obtained by contracting each set Ci to a single
vertex for i = 1, . . . , d + 1. The multigraph G̃ is connected and has d + 1 vertices. We
have an injective map from FZ(G̃), the cut lattice of G̃, to FZ, the cut lattice of G, and
β1, . . . , βd come from FZ(G̃). In addition, they form a basis of FZ(G̃). In particular, they
are linearly independent.

Denote by χ
D
∈ C1(G,R) the element which takes value 1 at each oriented edge of D,

and value zero at each edge of Ci, for all i = 1, . . . , d+ 1. By definition, we have x ∈ FD if
and only if

∀β ∈ UD, 2〈x, β〉 = ‖β‖2 = 〈χ
D
, β〉, or equivalently, if and only if

∀β ∈ UD, 〈2x− χ
D
, β〉 = 0.

Since, as before, βi is a sum of elements in UD, we get

∀i = 1, . . . , d, 〈2x− χ
D
, βi〉 = 0.

This proves that FD ⊆
⋂d
i=1 Fβi , where Fβi :=

{
x
∣∣ 〈x, βi〉 = ‖βi‖2

}
for each i. Since

β1, . . . , βd are linearly independent, this proves that FD is of codimension at least d =
codim(D). On the other hand, each cut element β of FZ with positive support in D is in
the image of the inclusion map FZ(G̃) ↪→ FZ, and so is a linear combination of β1, . . . , βd.
This implies that

∀x ∈
d⋂
i=1

Fβi , ∀β ∈ FZ with supp+(β) ⊆ E(D), 〈2x− χ
D
, β〉 = 0,

or equivalently 〈2x, β〉 = 〈χ
D
, β〉. Since for β with supp+(β) ⊂ E(D), we have 〈χ

D
, β〉 =

‖β‖2, it follows that
⋂d
i=1 Fβi ⊆ FD. We conclude that FD =

⋂d
i=1 Fβi , which proves the

second statement of the lemma. �

We will prove the existence of a face f of VorF (O) of codimension codim(D) which is
included in FD, and with φ(f) = D, which proves the surjectivity of φ. We start by giving
a classification of all the vertices of VorF (O).

Lemma 3.42. If D is an acyclic orientation of G, then FD consists of the single point
νD which is the vertex of VorF (O) satisfying φ(νD) = D. Furthermore, all the vertices of
VorF (O) are of this form.



36 OMID AMINI AND EDUARDO ESTEVES

Proof. We already know that FD has codimension |V | − 1, i.e., FD = {νD}. To prove that
νD is a vertex of VorF (O), we have to show that ‖νD‖ ≤ ‖νD − β‖ for every β ∈ FZ.
Since D is an acyclic orientation of G, the elements in UD generate FZ. Thus, there exist
coefficients aµ ∈ Z, for µ ∈ UD, such that∑

µ∈UD

aµµ = β.

We have

2〈νD, β〉 =
∑
µ∈UD

2aµ〈νD, µ〉

=
∑
µ∈UD

aµ‖µ‖2 =
∑
µ∈UD

aµ
∑

e∈supp+(µ)

µ(e)

=
∑

e∈E(D)

β(e) ≤
∑

e∈E(D)

|β(e)| = ‖β‖2,

and the inequality is strict if and only if supp+(β) is not contained in D. This shows that
νD is a vertex of VorF (O).

Furthermore, since {νD} ⊆ Fβ for each β ∈ UD, it follows that UD ⊆ UνD . Since

E(D) =
⋃
β∈UD

supp+(β)

by Lemma 3.41, and since D is already an orientation of the whole G, it follows that
φ(νD) = D.

To prove all the vertices are of the form νD, consider a vertex ν and the coherent acyclic
orientationD = φ(ν) of a cut subgraph of G. It follows from Proposition 3.39 that UD = Uν
and {ν} = VorF (O) ∩ FD. Let D′ be an acyclic orientation of the whole G extending D.
Clearly, FD′ ⊆ FD. But then

{νD′} = VorF (O) ∩ FD′ ⊆ VorF (O) ∩ FD = {ν}
and ν and νD′ must coincide. �

Consider now the general case, and suppose that D0 is a coherent acyclic orientation of
a cut subgraph of G. Consider all the acyclic orientations D of G which contain D0, and
for each such D, let νD be the corresponding vertex of Vor(O), which lies on the affine
plane FD0 . Define f0 as the convex hull of all the vertices νD of VorF (O).

Proposition 3.43. Notation as above, f0 is a face of VorF (O) of codimension equal to
codim(D0), and we have φ(f0) = D0. In particular, the map φ is surjective.

Proof. The proof is a matter of putting all we have proved so far together. The intersection
of FD0 with VorF (O) is the convex hull of the vertices of VorF (O) which lie on FD0 . By
Lemma 3.42, these vertices are of the form νD for acyclic orientations D of G. Furthermore,
since νD ⊆ FD0 , we have that UD0 ⊆ UνD . As UνD = Uφ(νD) by Proposition 3.39, it follows
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from Lemma 3.42 that UD0 ⊆ UD, whence E(D0) ⊆ E(D) by Lemma 3.41. This shows that
f0 = FD0 ∩ VorF (O).

We claim now that UD0 = Uf0 . Indeed, if β ∈ UD0 then Fβ ⊇ FD0 ⊇ f0, whence β ∈ Uf0 .
Conversely, suppose β 6∈ UD0 . Since E(D0) =

⋂
D E(D) with the intersection running

over all the acyclic orientations D of G extending D0, we would infer the existence of one
such orientation D such that β 6∈ UD. Since D = φ(νD) by Lemma 3.42, it follows from
Proposition 3.39 that β 6∈ UνD . Since νD ∈ f0, we have that β 6∈ Uf0 .

To prove the assertion on the codimension of f0, by Lemma 3.41 we need prove that
codim(f0) = codim(FD0). Otherwise though, we would have codim(f0) > codim(FD0),
which means there would be a bond element β with f0 ⊂ Fβ and β /∈ UD0 , contradicting
the claim just proved.

Finally, since Uf0 = Uφ(f0) by Proposition 3.39, the claim yields UD0 = Uφ(f0), and thus
D0 = φ(f0) by Lemma 3.41. �

3.5. The projection map �FZ to VorF revisited. By Theorem 3.14, the union of cubes
�FZ projects onto the Voronoi decomposition of FR with respect to the lattice FZ. Let fD
be the face of VorF (O) corresponding to a coherent acyclic orientation D of a cut subgraph
of G of codimension d. To such D ∈ CAC corresponds the face �D,0 of �0 of dimension
|E| − |E(D)| described as follows:

First we have the point χ
D
∈ C1(G,Z) associated to D which takes value +1 on ev-

ery e ∈ E(D), value −1 on every e with e ∈ E(D), and value 0 elsewhere. Denote by
X1, . . . , Xd+1 all the connected components of G − E(D), and �1,0, . . . ,�d+1,0 the hyper-
cubes corresponding to X1, . . . , Xd+1, so we have �i,0 ⊂ C1(Xi,R) for i = 1, . . . , d+ 1.

For each i = 1, . . . , d+ 1, extending by zero, we have an inclusion C1(Xi,R) ⊂ C1(G,R)
which sends the lattice C1(Xi,Z) to C1(G,Z). In this way, we identify C1(Xi,R) with its
image in C1(G,R). Define

�D,0 =
1

2
χ

D
+

d+1∑
i=1

�i,0,

where the sums are taken in C1(G,R). Note that �D,0 is a cube of dimension |E|− |E(D)|
consisting of the points x ∈ C1(G,R) whose eth-coordinate xe is equal to 1/2 for each
e ∈ E(D), and satisfies −1/2 ≤ xe ≤ 1/2 for every e with e, e /∈ E(D).

For each i = 1, . . . , d+ 1 denote by Fi,R the image of C0(Xi,R) by the coboundary map
di : C0(Xi,R) → C1(Xi,R) and by Fi,Z the cut lattice of Xi. Let VorFi

be the Voronoi
decomposition of Fi,R with respect to Fi,Z, and denote by VorFi

(O) the Voronoi cell of the
origin in Fi,R. We view VorFi

(O) as a convex polytope in C1(G,R), under the inclusions
Fi,R ⊆ C1(Xi,R) ⊆ C1(G,R).

Theorem 3.44. Notations as above, consider the orthogonal projection map πF : C1(G,R)→
FR. The following three statements hold:

(1) The cube �D,0 is mapped onto the face fD of VorF (O).
(2) The interior of �D,0 is mapped onto the interior of the face fD.
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(3) The map πF induces an isomorphism between VorF1(O) + · · · + VorFd+1
(O) + 1

2
χ

D

and the face fD of VorF (O).

Proof. (1) For each point x ∈ �D,0 and each β ∈ UD, we have

〈πF (x), β〉 = 〈x, β〉 =
1

2

∑
e∈supp+(β)

βe =
1

2
‖β‖2,

which shows that πF (�D,0) ⊆ FD =
⋂
β∈UD Fβ. Since πF (�D,0) ⊆ πF (�0) = VorF (O), it

follows that �D,0 is projected into fD. On other hand, we claim that each x ∈ �0 with
πF (x) ∈ fD verifies xe = 1

2
for all e ∈ E(D). Indeed, for each e ∈ E(D), by Lemma 3.41

there is β ∈ UD such that βe > 0, and thus βe = 1 by Proposition 3.24. Since fD ⊆
Fβ ∩ VorF (O) = VorF (β) ∩ VorF (O), it follows from Theorem 3.14 that x ∈ �0 ∩�β, and
thus xe = 1/2. By the claim, the surjectivity of πF : �D,0 → fD follows from that of
πF : �0 → VorF (O).

(2) We have to show that for all the points x ∈ �D,0 with |xe| < 1
2
for every e with

e, e /∈ E(D), we have that πF (x) lies in the interior of fD. This is equivalent to showing
that for each D′ ∈ CAC with E(D) $ E(D′), we have πF (x) /∈ fD′ . For such D′, by
Lemma 3.41, there exists a bond β′ ∈ UD′ − UD, for which we have

〈πF (x), β′〉 = 〈x, β′〉 < 1

2

∑
e∈supp+(β′)

β′e =
1

2
‖β′‖2,

which shows that πF (x) /∈ fD′ .

(3) Denote ∆D := VorF1(O) + · · · + VorFd+1
(O) + 1

2
χ

D
. We prove first that the map

πF restricted to ∆D is injective. Consider two points x = x1 + · · · + xd+1 + 1
2
χ

D
and

y = y1 + · · · + yd+1 + 1
2
χ

D
in ∆D with xi, yi ∈ VorFi

(O) for i = 1, . . . , d + 1. Suppose
πF (x) = πF (y). We need to prove that xi = yi for every i. For each i and each S ⊂ Xi,
consider the cut β := d(χ

S
) defined by S in G. From πF (x) = πF (y) we get

0 = 〈πF (x)− πF (y), β〉 = 〈x, β〉 − 〈y, β〉 = 〈xi, βi〉i − 〈yi, βi〉i,

where 〈. , .〉i denotes the pairing in C1(Xi,R) and βi := di(χS
). Since the cut elements

di(χS
) generate Fi,R, and xi, yi ∈ Fi,R, it follows that xi = yi, hence the injectivity follows.

To prove the surjectivity, write z ∈ �D,0 as the sum z1 + · · ·+ zd+1 + 1
2
χ

D
for zi ∈ �i,0

for i = 1, . . . , d + 1. Put xi := πFi
(zi) for each i. Then xi ∈ VorFi

(O) by Theorem 3.14,
and xi − zi is in the cycle space of Xi. As this space is included in the cycle space of G,
we have πF (xi) = πF (zi). Thus πF (z) = πF (x) for x = x1 + · · · + xd+1 + 1

2
χ

D
∈ ∆D, and

then surjectivity follows from (1). �

4. Tilings II: general edge lengths

In this section, we generalize the results of Section 3 to the case of graphs in the presence
of a general integer valued length function on edges.
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Consider the setting of Section 2. Let G = (V,E) be a graph with integer edge lengths
` : E → N, and let H be the subdivision of G where each edge e is subdivided `e−1 times.
Consider the Voronoi decomposition of C1(G,R) with respect to the lattice C1(G,Z), which
is the tiling by hypercubes �α for α ∈ C1(G,Z), considered in Section 3.

We will define a subcomplex �H of this Voronoi tiling which takes into account the
structure of the G-admissible divisors on H, and generalize Theorem 3.14 to this setting.
As a result, we will obtain a tiling of H0,R =

{
f ∈ C0(G,R)

∣∣∑
v∈V f(v) = 0

}
into convex

polytopes where each polytope in the tiling is congruent to the Voronoi polytope VorFG′
(O)

of a subgraph G′ of G.
We follow the notation we used in Section 2. In particular, for each f ∈ C0(G,Z), and

each edge e = uv ∈ E(G), we set δe(f) := bf(v)−f(u)
`e

c.

Definition 4.1 (Point df , subgraph Gf , cube �f and arrangement of cubes �H). For each
f ∈ C0(G,Z), define:

• the point df ∈ C1(G, 1
2
Z) by

∀ e = uv ∈ E(G), df (e) :=
1

2

(
δe(f)− δe(f)

)
=

{
δe(f) if `e

∣∣ f(v)− f(u),

δe(f) + 1
2

otherwise.

• the spanning subgraph Gdf of G by setting E(Gdf ) to be the set of all e = uv ∈ E(G)

with `e
∣∣∣ f(v)− f(u), i.e., with df (e) ∈ Z.

• the cube of dimension |E(Gdf )| by

�df :=
{
df + ε

∣∣∣ ε ∈ C1(G,R) with ‖ε‖∞ ≤
1

2
, and ε(e) = 0 for all e ∈ E(G)− E(Gdf )

}
.

• the arrangement of hypercubes �G,`, simply denoted �H if G is understood from
the context, by

�H = �G,` :=
⋃

f∈C0(G,Z)

�df .

If there is no risk of confusion, we simply denote Gdf and �df by Gf and �f . Notice that
different f might give rise to the same hypercube �f . In addition, for each f ∈ C0(G,Z),
we have

�f := df + ιf (�Gf ,0),

where �Gf ,0 is the hypercube of the origin in the Voronoi decomposition of C1(Gf ,R) with
respect to the sublattice C1(Gf ,Z), and ιf : C1(Gf ,R) ↪→ C1(G,R) is the map obtained
by extending functions by zero.

Notice that the arrangement of hypercubes for uniform unitary edge lengths, ` = 1, is
identified with the arrangement �FZ associated to the cut lattice FZ of G from Section 3;
in other words, �G = �FZ .
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4.1. The projection map θ : �G → �H. Let �G = �FZ =
⋃
β∈FZ

�β be as in Section 3.
In this section, we construct a projection θ : �G → �H .

Definition 4.2 (projection �d(f) → �df ). Let f ∈ C0(G,Z). Define the map θf : �d(f) →
�df as follows: for a point d(f) + ε, with ‖ε‖∞ ≤ 1

2
, define

θf (d(f) + ε) := df + ιf (ε|C1(Gf ,R)),

where ιf : C1(Gf ,R) ↪→ C1(G,R) is the extension by zero.

Note that the definition is independent of the choice of f which gives the hypercube
�d(f) and that different hypercubes in �G might project down to the same cube �df (this
phenomenon is dependent on the edge length function `).

Proposition 4.3. The collection of maps θf for f ∈ C0(G,Z) are consistent on intersec-
tions of hypercubes, thus yielding a well-defined projection map θ : �G → �H .

Proof. Let β = d(f) and λ = d(h) for two elements f, h ∈ C0(G,Z). We need to prove that
the projection maps θβ and θλ are consistent on the points of the intersection �β ∩�λ. We
may suppose that �β ∩�λ 6= ∅. Thus, |βe − λe| ≤ 1 for each e ∈ E(G).

Let x be a point in the intersection �β ∩ �λ. We show that θf (x) is equal to θh(x) by
showing that their e-th coordinates are the same for each e ∈ E(G). Consider first the
case βe = λe. In this case, we can write xe = βe + εe = λe + εe where |εe| ≤ 1/2. Two
cases can happen: If `e | βe then θf (x)e = θh(x)e = βe/`e + εe; whereas if `e - βe then
θf (x)e = θh(x)e = bβe/`ec+ 1/2. In either case the coordinates are the same.

Consider now the case |βe−λe| = 1, and assume, using symmetry, that βe = λe+1. In this
case, we must have xe = λe+1/2 = βe−1/2. We have θh(x)e = bλe/`ec+1/2. Two cases can
happen: If `e | βe then xe = βe−1/2, whence θf (x)e = βe/`e−1/2 = bλe/`ec+1/2 = θh(x)e;
whereas if `e - βe then θf (x)e = bβe/`ec + 1/2 = b(βe − 1)/`ec + 1/2 = θh(x)e. Again, in
either case, the coordinates are the same. �

4.2. Fibers of the projection map θ. Next, we describe the fibers of θ. Consider
f ∈ C1(G,Z), and let Gf be the subgraph of G associated to f . Let C1, . . . , Ck be the
connected components of Gf . Consider an element h ∈ C1(G,Z). If df = dh then Gf = Gh

and �df = �dh ; thus �d(f) and �d(h) are mapped to the same cube �df = �dh .

Proposition 4.4. Notation as above, if df = dh then the difference h − f is constant on
each connected component Ci of Gf .

Proof. For each oriented edge e = uv ∈ E(Ci), we have `e | f(v)−f(u) and `e | h(v)−h(u),
and from df = dh we get

f(v)− f(u)

`e
= df (e) = dh(e) =

h(v)− h(u)

`e
,

which by the connectedness of Ci shows that h− f is constant on Ci. �

Corollary 4.5. If df = dh and Gf is connected then d(f) = d(h).
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Claim 4.6. Assume df = dh. Denote by η : {1, . . . , k} → Z the function which takes value
h(u)− f(u) at i for every u ∈ Ci. Let e = uv ∈ E(G) be an oriented edge with u ∈ Ci and
v ∈ Cj for distinct i, j. Then

bdf (e)c`e − d(f)(e) < η(j)− η(i) < ddf (e)e`e − d(f)(e).

Proof. Since i 6= j, we have bdh(e)c`e < h(v) − h(u) < ddh(e)e`e. Substituting df for dh,
and using that h(v) = f(v) + η(j) and h(u) = f(u) + η(i) gives the result. �

Note that the interval appearing in the above claim has extremities −re and `e− re with
re the rest of the division of d(f)(e) by `e,

The above claim leads us to the following definition.

Definition 4.7. For all distinct i, j for which there is an edge of G between Ci to Cj,
define Iij as

Iij :=
⋂

e∈E(Ci,Cj)

[
bdf (e)c`e − d(f)(e) + 1 , ddf (e)e`e − d(f)(e)− 1

]
.

If there is no edge between Ci and Cj, set Iij := R.

Note in particular that 0 ∈ Iij and Iij = −Iji for all distinct i, j. Using this terminology,
we can now reformulate Claim 4.6 as follows:

Claim 4.8. Notations as above, assume df = dh and let η : {1, . . . , k} → Z be the function
taking the value at i equal to the difference of h − f at any vertex in Ci. For all distinct
i, j we have η(j)− η(i) ∈ Iij.

We infer the following proposition:

Proposition 4.9. A function h : V → Z verifies dh = df if and only if the difference
η = h− f verifies the assertions of Proposition 4.4 and Claim 4.6, namely:

• The function η is constant on each connected component Ci of Gf for i = 1, . . . , k;
denote by η(i) the common value taken on Ci.
• For all distinct i, j we have η(j)− η(i) ∈ Iij.

Proof. Immediate from the above discussion. �

So in order to understand the fibers of the projection map, it will be crucial to understand
the structure of all the functions η which verify the two properties stated in the above
proposition. Let us make the following useful definition:

Denote by Kk the complete graph on k vertices: the vertices are labeled 1, . . . , k and
each two distinct vertices are connected by a unique edge. Let I be a collection of closed
intervals Iij ⊆ R associated to the oriented edges ij of Kk such that 0 ∈ Iij and Iij = −Iji
for all distinct i, j. Assume in addition that if Iij is compact, then its endpoints are both
integer. We denote by Kk[I] the spanning subgraph of Kk with edges consisting of all the
pairs {i, j} with Iij a compact interval. In our setting, Kk[I] coincides with the graph
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obtained from Gf by contracting all the components C1, . . . , Ck of Gf , and then removing
the loops and parallel edges (making the contracted graph simple).

Definition 4.10. Notations as above, define C0(Kk[I],Z; I) as the subset of all functions
η ∈ C0(Kk[I],Z) which verify η(j) − η(i) ∈ Iij for all distinct i, j with {i, j} and edge of
Kk[I], i.e., with Iij compact.

Since 0 ∈ Iij for all i, j, we have 0 ∈ C0(Kk[I],Z; I). In particular, this set is non-empty.
Consider the subspace FKk[I],R := d(C0(Kk[I],R)) ⊂ C1(Kk[I],R), and define the con-

vex polyhedron PI ⊂ C1(Kk[I],R) as

PI :=
{
x ∈ FKk[I],R

∣∣∣xij ∈ Iij for all oriented edges ij ∈ E(Kk[I])
}
.

By definition, C0(Kk[I],Z; I) is the set of all η ∈ C0(Kk[I],Z) such that dη ∈ FKk[I],Z∩PI .
It follows that C0(Kk[I],Z; I) is the set of integer points of d−1(PI) ⊆ C0(Kk[I],R), which
is a convex polyhedron.

Let PI,Z := PI ∩ FKk[I],Z, so we have PI,Z = d(C0(Kk[I],Z; I)). From the above discus-
sion we get the following proposition:

Proposition 4.11. For each point p in the relative interior of the cube �df , we have

θ−1(p) '
⋃

µ∈PI,Z

�µ,

where I is given in Definition 4.7.

To be more precise, let  : C1(Kk[I],R) ↪→ C1(G,R) be defined as follows: For each
x ∈ C1(Kk[I],R), the image (x) in C1(G,R) takes value xij on each oriented edge e = uv
with u ∈ Ci and v ∈ Cj for all distinct i, j with {i, j} and edge of Kk[I], and takes value
zero elsewhere. Then, if p = df + y,

θ−1(p) = d(f) + y + 
( ⋃
µ∈PI,Z

�µ

)
= d(f) + y +

⋃
µ∈PI,Z


(
�µ

)
'

⋃
µ∈PI,Z

�µ.

4.3. The projection map d∗ : �H → H0,R and the mixed Voronoi tiling. Consider
the map d∗ : �H → C0(G,R), which has image in H0,R. Recall that H0,R is the hyperplane
of C0(G,R) which consists of all the functions f ∈ C0(G,R) with

∑
v∈V (G) f(v) = 0.

In this section, we prove a generalization of Theorem 3.14.

Proposition 4.12. For each f ∈ C0(G,Z) such that Gf is connected, the image d∗(�f ) is
a polytope of dimension |V |−1 in H0,R ⊂ C0(G,R) which is congruent to VorGf

(O). More
precisely, d∗(�f ) = d∗(df ) + VorGf

(O). Furthermore, d∗ maps the relative interior of �f

onto the interior of d∗(�f ).

(Notice that C0(Gf ,R) = C0(G,R) naturally, so VorGf
(O) can be seen in C0(G,R).)
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Proof. Let f ∈ C0(G,Z) with Gf connected. We have

d∗(�f ) = d∗(df ) + d∗(�Gf ,0),

where �Gf ,0 denotes the hypercube with center 0 in C1(Gf ,R), consisting of all the points
ε with ‖ε‖∞ ≤ 1

2
, viewed in C1(G,R) by extending by zero. The adjoint d∗ for G restricts

to that for Gf for this natural inclusion of C1(Gf ,R) in C1(G,R). Thus, by Theorem 3.14,
since Gf is connected, we infer that d∗(�Gf ,0) is the Voronoi cell of the origin VorGf

(O) in
C0(Gf ,R) = C0(G,R). Furthermore, by the same theorem, the interior of �Gf ,0 is mapped
onto the interior of VorGf

(O). �

Definition 4.13. For each f ∈ C0(G,Z) with connected Gf , we call d∗(�f ) the Voronoi
polytope associated to (G, `) and f , and denote it by VorG,`(f) or simply VorH(f) if G is
understood from the context.

Proposition 4.14. Let f and h be two elements of C0(G,Z) such that f−h is not constant
and such that Gf and Gh are both connected. Then the interiors of VorH(f) and VorH(h)
are disjoint.

Proof. We first note that df 6= dh. Indeed, otherwise, if df = dh, since Gf is connected,
Proposition 4.4 would yield that f − h would be constant.

For the sake of a contradiction, using Proposition 4.12, suppose there exist df + ε and
dh+ε in the relative interiors of �f and �h, respectively, satisfying d∗(df + ε) = d∗(dh+ε).
By definition, for each e ∈ E(G) we have:

• If e /∈ E(Gf ) then εe = 0, whereas if e ∈ E(Gf ) then |εe| < 1
2
.

• If e /∈ E(Gh) then εe = 0, whereas if e ∈ E(Gh) then |εe| < 1
2
.

Rewriting the assumption, we have

(4.1) d∗(df − dh) = d∗(ε− ε).

Let η := f − h, and let S be the set of all vertices of G where η takes its maximum
value. Since η is not constant, we have S ( V (G). Since Gf and Gh are both connected
spanning subgraphs of G, we have E(Gf )∩E(S, V −S) 6= ∅ and E(Gh)∩E(S, V −S) 6= ∅.

Claim 4.15. For each e ∈ E(S, V − S), we have df (e)− dh(e) ≤ εe − εe. In addition, the
inequality is strict if e belongs to either Gf or Gh.

Once this claim has been proved, we get a contradiction to (4.1). Indeed, we would have∑
v∈V−S

d∗(df −dh)(v) =
∑

e∈E(S,V−S)

(
df (e)−dh(e)

)
<

∑
e∈E(S,V−S)

(
εe− εe

)
=
∑

v∈V−S

d∗(ε− ε)(v).

The proof of the claim is based on the following case by case analysis:
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• If e = uv ∈ E(S, V − S) ∩ E(Gf ) ∩ E(Gh) then both f(v) − f(u) and h(v) − h(u)
are divisible by `e, and since η(v) < η(u), we get

df (e)− dh(e) =
1

`e

(
f(v)− f(u)

)
− 1

`e

(
h(v)− h(u)

)
=

1

`e

(
η(v)− η(u)

)
≤ −1 .

On the other hand, −1 < εe − εe < 1, which proves the claim in this case.
• Similarly, if e = uv ∈ E(S, V − S) ∩ E(Gf ) but e 6∈ E(Gh), then

df (e)− dh(e) =
1

`e

(
h(v)− h(u) + η(v)− η(u)

)
−
⌊h(v)− h(u)

`e

⌋
− 1/2 ≤ −1/2,

while −1
2
< εe − εe < 1

2
.

• If e ∈ E(S, V − S) ∩ E(Gh) but e 6∈ E(Gf ), the proof is similar.
• Finally, if e ∈ E(S, V −S) but e is neither in Gf nor in Gh, then df (e)− dh(e) ≤ 0,
while ε(e)− ε(e) = 0.

This finishes the proof of the claim, and then that of the proposition. �

We can now state the main theorem of this section, which is the promised generalization
of Theorem 3.14.

Theorem 4.16. The VorH(f) with Gf connected are the top dimensional cells of a tiling
VorG,` of H0,R into polytopes. Each top dimensional cell is congruent to the Voronoi cell
of a connected subgraph of G. More precisely, VorH(f) is congruent to VorGf

(O) for each
f ∈ C0(G,Z) with Gf connected.

Definition 4.17. The subdivision of H0,R into Voronoi cell associated to subgraphs Gf is
referred to as the mixed Voronoi tiling of H0,R induced by the edge length function ` on G.

Remark 4.18. We note that the connected subgraphs Gf determining the shape of poly-
topes that do appear in the tiling are special and dependent on the edge length function `.
For example, they all contain all the edges e of G for which `e = 1. Changing the length
function can drastically change the tiling. On the one hand, only finitely many polytopes,
up to translation, are used in all these tilings, and so the congruence classes of polytopes
which appear form a finite set. On the other hand, there exist tilings which use all these
polytopes. An example of such a tiling is the one associated with an edge length function
` which verifies that `e > 1 for all e and that `e and `e′ are coprime for all pairs of distinct
edges e and e′. In this case, an application of the Chinese Remainder Theorem shows that
every connected spanning subgraph G′ of G is equal to Gf for an element f ∈ C0(G,Z),
and so the Voronoi polytopes associated to all connected spanning subgraphs of G appear
in the tiling.

Remark 4.19. Denote by N the least common multiple of all the `e for e an edge of G.
The tiling is periodic with respect to the sublattice d∗(d(NC0(G,Z))).

We need some preparation before giving the proof of Theorem 4.16. Let f ∈ C0(G,Z) be
an element with connected Gf . Let S ⊆ V be a proper subset such that the characteristic
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function βf of the oriented cut EGf
(V − S, S) is a bond, that is, such that Gf [S] and

Gf [V − S] connected. Consider the functions hn := f + nχ
S

for n ∈ N. Note that
Ghn [S] = Gf [S] and Ghn [V − S] = Gf [V − S], whence Gf and Ghn can only differ in the
edges in G which are in the cut E(S, V −S). Let h := hn for the smallest posititive integer
n such that Ghn is connected. Since Gf [S] and Gf [V − S] are connected, n is also the
smallest positive integer for which there is e ∈ E(S, V − S) with dhn(e) ∈ Z. In particular,
df (e)− 1 ≤ dh(e) ≤ df (e) for each e ∈ E(S, V − S), the upper bound being achieved only
if df (e) 6∈ Z and the lower bound being achieved only if df (e) ∈ Z.

Also because Gf [S] and Gf [V − S] are connected, the characteristic function βh of the
oriented cut EGh

(V − S, S) is also a bond. Let ηf and ηh be the extensions by zero of βf
and βh to C1(G,Z), and define

(4.2) ηS,f :=
1

2
ηf +

1

2
ηh ∈ C1(G,

1

2
Z).

Lemma 4.20. Notations as above, we have dh − df = ηS,f . In addition, the Voronoi cells
VorH(f) and VorH(h) intersect at the facet of VorH(f) (resp. VorH(h)) given by the bond
βf of Gf (resp. by the bond −βh of Gh).

Proof. The first assertion is obtained from a case analysis: Let e ∈ E(G). If e ∈ E(S) or
e ∈ E(V − S) then dh(e) = df (e) = df (e) + ηS,f (e), since ηS,f (e) = 0. The same holds if
e ∈ E(S, V −S) but e 6∈ E(Gf )∪E(Gh). Suppose now e ∈ E(S, V −S). If e ∈ E(Gf )∩E(Gh)
then dh(e) = df (e)−1 = df (e)+ηS,f (e), as ηf (e) = ηh(e) = −1. If e ∈ E(Gf ) but e 6∈ E(Gh)
then dh(e) = df (e)−1/2 = df (e)+ηS,f (e), since ηf (e) = −1 but ηh(e) = 0. The same holds
if e ∈ E(Gh) but e 6∈ E(Gf ), the only difference being that now ηf (e) = 0 but ηh(e) = −1.
The first assertion is proved.

As for the second assertion, by Theorem 3.44 applied to Gf , the facet of VorGf
(O) given

by the bond βf is the image under d∗ of 1
2
ηf + �Gf [S],0 + �Gf [V−S],0, where �Gf [S],0 and

�Gf [V−S],0 are viewed as subsets of �0. Similarly, by Theorem 3.44 applied to Gh, the facet
of VorGh

(O) given by the bond −βh is the image under d∗ of −1
2
ηh +�Gh[S],0 +�Gh[V−S],0.

Since Gh[S] = Gf [S] and Gh[V − S] = Gf [V − S], it follows from the first assertion that

(4.3) df +
1

2
ηf + �Gf [S],0 + �Gf [V−S],0 = dh −

1

2
ηh + �Gh[S],0 + �Gh[V−S],0.

Since VorH(f) = d∗(df ) + VorGf
(O), it follows that the facet of VorH(f) given by βf is

the image under d∗ of the left hand side of (4.3). Analogously, the facet of VorH(h) given
by −βh is the image under d∗ of the right hand side of (4.3). So they coincide. The
lemma follows since the two Voronoi cells VorH(f) and VorH(h) have disjoint interiors by
Proposition 4.14. �

We can now present the proof of Theorem 4.16.

Proof of Theorem 4.16. We proved in Proposition 4.14 that the polytopes VorH(f) for
f ∈ C0(G,Z) with Gf connected have disjoint interiors. In order to prove the theorem, it
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will be thus enough to show that the union of the VorH(f) with Gf connected covers H0,R,
or equivalently, that the projection map d∗ : �H → H0,R is surjective.

Now, each tile VorH(f) is a translation of the Voronoi cell VorGf
(O) associated to a

connected subgraph Gf of G. As there are finitely many such subgraphs, it follows from
Proposition 4.14 that the union

H =
⋃

f∈C0(G,Z)
Gf connected

VorH(f)

is a closed subset of H0,R. Now consider a face f of a polytope VorH(f) in H. It will be
enough to show that the star of f in the arrangement of the polytopes H is a complete
fan. Suppose for the sake of a contradiction that this is not the case. There exists then
an element f ′ ∈ C0(G,Z) such that Gf ′ is connected, f belongs to VorH(f ′), and VorH(f ′)
contains a facet which is not shared by any other polytope among the polytopes in the
arrangement H. But this is a contradiction. Indeed, any facet of VorH(f ′) = df ′ +
VorGf

(O) corresponds to a bond in Gf by Theorem 3.14, and in Lemma 4.20 we proved
that such a facet is shared with another polytope VorH(h) with h ∈ C0(G,Z) such that
Gh is connected. �

For each f : C0(G,Z) with Gf connected and each proper subset S ⊂ V such that Gf [S]
and Gf [V − S] are connected, recall ηS,f ∈ C1(G, 1

2
Z), defined in (4.2).

Theorem 4.21. The one-skeleton of the dual of the mixed Voronoi tiling is isomorphic
to the graph with vertex set df for all f ∈ C0(G,Z) with Gf connected, and with edge
set {df , df + ηS,f} for all f as above and all proper subsets S ⊂ V such that Gf [S] and
Gf [V − S] are connected.

Proof. This is a local assertion for each facet of VorH(f), and thus follows from Theo-
rem 4.16 and Lemma 4.20. �

5. Tilings III: general edge lengths with twisting

In this section, we generalize the results of the previous section to the case of general edge
lengths with a twisting. This will be connected to the admissible divisors we considered in
Section 2.

Let G = (V,E) be a graph with integer edge lengths ` : E → N, and let H be the
subdivision of G where each edge e is subdivided `e − 1 times. Let m ∈ C1(G,Z). We use
me to denote the value of m at the oriented edge e ∈ E(G).

As in the previous section, we will consider the Voronoi decomposition of C1(G,R) with
respect to the lattice C1(G,Z), which is the tiling by hypercubes �α for α ∈ C1(G,Z),
define a subcomplex �m

H of this tiling as the union of certain specific cubes, and then take
the projection by d∗ to obtain a tiling of H0,R =

{
f ∈ C0(G,R)

∣∣∑
v∈V f(v) = 0

}
in convex

polytopes in which each polytope is congruent to the Voronoi polytope VorG′(O) associated
to a certain connected spanning subgraph G′ of G.
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The subcomplex �m
H is defined as follows: First, for each f ∈ C0(G,Z) and each edge

e = uv ∈ E(G), set δme (f) := bf(v)−f(u)+me

`e
c.

Definition 5.1 (Point dmf , subgraph Gm
f , cube �m

f and arrangement of cubes �m
H). For

each f ∈ C0(G,Z), define:
• the point dmf ∈ C1(G, 1

2
Z) by

∀ e = uv ∈ E, dmf (e) :=
1

2

(
δme (f)− δme (f)

)
=

{
δme (f) if `e

∣∣ f(v)− f(u) + me

δme (f) + 1
2

otherwise;

• the spanning subgraphGdmf
ofG by setting E(Gdmf

) to be the set of all e = uv ∈ E(G)

with `e
∣∣∣ f(v)− f(u) + me, i.e., with dmf (e) ∈ Z;

• the cube of dimension |E(Gdmf
)| by

�dmf
:=
{
dmf + ε

∣∣∣ ε ∈ C1(G,R) with ‖ε‖∞ ≤
1

2
, and ε(e) = 0 for e ∈ E(G)− E(Gdmf

)
}

;

• the arrangement of hypercubes �m
G,`, simply denoted �m

H if G is understood from
the context, by

�m
H = �m

G,` :=
⋃

f∈C0(G,Z)

�dmf
.

If there is no risk of confusion, we simply denote Gdmf
and �dmf

by Gm
f and �m

f .
For each f ∈ C0(G,Z) we denote by ιmf the inclusion C1(Gm

f ,R) ↪→ C1(G,R) obtained by
extending by zero an element α ∈ C1(Gm

f ,R) to the whole graph G. For each f ∈ C0(G,Z),
we have �m

f := dmf + ιmf (�Gm
f ,0

), where �Gm
f ,0

is the hypercube of the origin in the Voronoi
decomposition of C1(Gm

f ,R) with respect to the sublattice C1(Gm
f ,Z).

We note that the arrangement of hypercubes with m = 0 is identified with the arrange-
ment �H of the previous section. For ` = 1 and m = 0, we obtain �m

H = �G.
Proceeding as in the previous section, we construct a projection θm : �G → �m

H .

Definition 5.2 (Projection �d(f) → �dmf
). Let f ∈ C0(G,Z). Denote by θmf : �d(f) → �dmf

the map taking each point d(f) + ε with ‖ε‖∞ ≤ 1
2
to dmf + ιmf (ε|Gm

f
).

Proposition 5.3. There is a well-defined projection map θm : �G → �m
H restricting to the

θmf for all f ∈ C0(G,Z).

Proof. The proof is similar to that of Proposition 4.3 and is omitted. �

Let f ∈ C1(G,Z), and denote by C1, . . . , Ck the connected components of Gm
f . Let

h ∈ C1(G,Z). We have the following extension of Proposition 4.4.

Proposition 5.4. Notations as above, if dmh = dmf then the difference h− f is constant on
each connected component Ci of Gm

f .



48 OMID AMINI AND EDUARDO ESTEVES

Proof. The proof is similar to that of Proposition 4.4. Namely, from dmf = dmh , we get
Gm
f = Gm

h , which gives for each i and e = uv ∈ E(Ci):

f(v)− f(u) + me

`e
= dmf (e) = dmh (e) =

h(v)− h(u) + me

`e
.

From the connectedness of Ci, we conclude that h− f is constant on Ci. �

This then leads to the definition of η : {1, . . . , k} → Z, the function which takes value
h(u)− f(u) at i for any u ∈ Ci, and the intervals Iij for all distinct i, j ∈ {1, . . . , k}:

Iij :=
⋂

e∈E(Ci,Cj)

[
bdmf (e)c`e − d(f)(e) + 1 , ddmf (e)e`e − d(f)(e)− 1

]
if E(Ci, Cj) is non-empty, and Iij := R otherwise. We get the following extension of
Proposition 4.9:

Proposition 5.5. A function h : V → Z verifies dmh = dmf if and only if the difference
η = h− f verifies the following two properties:

• The function η is constant on each connected component Ci of Gm
f ; denote by η(i)

the common value taken on Ci.
• For all distinct i, j we have η(j)− η(i) ∈ Iij.

This leads verbatim as before to the characterization of the fibers of the projection map
θm, as follows. Recall that for a collection of intervals I as above, we denote by Kk[I]
the subgraph of Kk with edges {i, j} such that Iij is compact, that PI is the polytope of
all the x ∈ FKk[I],R such that xij ∈ Iij for every oriented edge ij ∈ E(Kk[I]), and that
PI,Z := PI ∩ FKk,Z is the set of integer points of PI .

Let, as before,  : C1(Kk[I],R) ↪→ C1(G,R) be the embedding which sends the point
x ∈ C1(Kk[I],R) to the element of C1(G,R) which takes value xij on each e = uv with
u ∈ Ci and v ∈ Cj for distinct i, j with Iij compact, and takes value zero elsewhere.

Proposition 5.6. For each point p = dmf + x in the relative interior of the cube �dmf
, we

have

θm
−1

(p) = d(f) + x+ 
( ⋃
µ∈PI,Z

�µ

)
= d(f) + x+

⋃
µ∈PI,Z


(
�µ

)
'

⋃
µ∈PI,Z

�µ.

Consider now the map d∗ : �m
H → H0,R. We have the following direct extensions of

Propositions 4.12 and 4.14:

Proposition 5.7. For each f ∈ C0(G,R) with Gm
f connected, we have d∗(�m

f ) = d∗(dmf ) +
VorGm

f
(O). In particular, d∗(�m

f ) is a polytope of top dimension |V | − 1 in H0,R. Further-
more, d∗ maps the relative interior of �m

f onto the interior of d∗(�m
f ).

Proof. Similar to the proof of Proposition 4.12. �

For each f ∈ C0(G,R) with connected Gm
f , define VormH(f) := d∗(�m

f ).



VORONOI TILINGS, TORIC ARRANGEMENTS AND DEGENERATIONS OF LINE BUNDLES I 49

Proposition 5.8. For each f and h in C0(G,Z) such that f − h is not constant and such
that Gm

f and Gm
h are both connected, the interiors of VormH(f) and VormH(h) are disjoint.

Proof. The proof is similar to that of Proposition 4.14. Namely, by Proposition 5.4, we
have dmf 6= dmh . By Proposition 5.7, reasoning by absurd, suppose there are two points dmf +ε
and dmh +ε in the relative interiors of �m

f and �m
h , respectively, with d∗(dmf +ε) = d∗(dmh +ε).

By definition, for each e ∈ E(G) we have:
• If e /∈ E(Gm

f ) then εe = 0, whereas if e ∈ E(Gm
f ) then |εe| < 1

2
.

• If e /∈ E(Gm
h ) then εe = 0, whereas if e ∈ E(Gm

h ) then |εe| < 1
2
.

Let η := f−h, and let S be the set of all vertices of G where η takes its maximum value.
Since f − h is not constant, S is a proper subset of V (G). Since Gm

f and Gm
h are connected

spanning subgraphs of G, we have E(Gm
f )∩E(S, V −S) 6= ∅ and E(Gm

h )∩E(S, V −S) 6= ∅.
By assumption,

(5.1) d∗(dmf − dmh ) = d∗(ε− ε).
We claim that for each edge e ∈ E(S, V − S) we have dmf (e) − dmh (e) ≤ εe − εe, with
strict inequality if e belongs either to Gm

f or Gm
h . Once this has been proved, we get a

contradiction to (5.1) as in the proof of Proposition 4.14.
To prove the claim, we proceed by a case by case analysis:
• If e = uv ∈ E(S, V − S) ∩ E(Gm

f ) ∩ E(Gm
h ) then both f(v)− f(u) + me and h(v)−

h(u) + µe are divisible by `e, and since η(v) < η(u), we get

dmf (e)− dmh (e) =
1

`e

(
f(v)− f(u) + me

)
− 1

`e

(
h(v)− h(u) + me

)
=

1

`e

(
η(v)− η(u)

)
≤ −1 .

On the other hand, −1 < εe − εe < 1, proving the claim in this case.
• Similarly, if e = uv ∈ E(S, V − S) ∩ E(Gm

f ) but e 6∈ E(Gm
h ),, then

dmf (e)− dmh (e) =
1

`e

(
h(v)− h(u) + me + η(v)− η(u)

)
−
⌊h(v)− h(u) + me

`e

⌋
− 1/2,

whence dmf (e)− dmh (e) ≤ 1
2
, while −1

2
< εe − εe < 1

2
.

• If e ∈ E(S, V − S) ∩ E(Gm
h ) but e 6∈ E(Gm

f ), the proof is similar.
• Finally, if e ∈ E(S, V −S) but e is neither in Gm

f nor in Gm
h , then dmf (e)−dmh (e) ≤ 0,

while ε(e)− ε(e) = 0.
This proves the claim, and finishes the proof of the proposition. �

Here is the main theorem of this section:

Theorem 5.9. The set of polytopes VormH(f) with Gm
f connected provide a tiling VormG,` of

H0,R. Each top-dimensional cell in this tiling is congruent to the Voronoi cell of a connected
subgraph of G. More precisely, VormH(f) is congruent to VorGm

f
(O) for each f ∈ C0(G,Z)

with Gm
f connected.
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Remark 5.10. This is the most general type of tiling we can get. Note that it might
happen for particular choices of ` and m that none of the subgraphs Gm

f is equal to G.

The proof goes as in the proof of Theorem 4.16, so we need first to extend Lemma 4.20.
For future use in [AE20a], we also provide a complete characterization of intersecting
Voronoi cells.

5.1. Characterization of intersecting Voronoi cells and proof of Theorem 5.9.
We start by the extension of Lemma 4.20. Let f ∈ C0(G,Z) with connected Gm

f . Let
S ⊆ V be a proper subset such that the characteristic function βf of the oriented cut
EGm

f
(V − S, S) is a bond. Consider the functions hn := f + nχ

S
for n ∈ N and let h := hn

for the smallest positive integer n such that Gh is connected. Note that Gm
h [S] = Gm

f [S] and
Gm
h [V −S] = Gm

f [V −S]. Also, as before, dmf (e)−1 ≤ dmh (e) ≤ df (e) for each e ∈ E(S, V −S),
the upper bound being achieved only if dmf (e) 6∈ Z and the lower bound being achieved only
if dmf (e) ∈ Z.

The characteristic funtion βh of the oriented cut EGm
h
(V − S, S) is also a bond. Let ηf

and ηh be the extensions by zero of βf and βh to C1(G,Z), and define

ηmS,f =
1

2
ηf +

1

2
ηh.

Lemma 5.11. Notations as above, we have dmh − dmf = ηmS,f . In addition, the Voronoi cells
VormH(f) and VormH(h) intersect at the the facet of VormH(f) (resp. VormH(h)) given by the
bond βf of Gm

f (resp. by the bond −βh of Gm
h ).

Proof. As before, the first assertion follows from a case analysis. Let e ∈ E(G). If e ∈ E(S)
or e ∈ E(V − S), then dmh (e) = dmf (e) = dmf (e) + ηmS,f (e), since ηmS,f (e) = 0. The same
holds if e ∈ E(S, V − S) but e 6∈ E(Gm

f ) ∪ E(Gm
h ). Suppose now e ∈ E(S, V − S). If

e ∈ E(Gm
f ) ∩ E(Gm

h ), then dmh (e) = dmf (e) − 1 = dmh (e) + ηmS,f (e), as ηf (e) = ηh(e) = −1. If
e ∈ E(Gm

f ) but e 6∈ E(Gm
h ), then dmh (e) = dmf (e) − 1/2 = dmf (e) + ηmS,f (e), since ηf (e) = −1

and ηh(e) = 0. The same holds if e ∈ E(Gm
h ) but e 6∈ E(Gm

f ), the only difference been that
now ηf (e) = 0 and ηh(e) = −1. The first assertion is proved.

As for the second assertion, by Theorem 3.14 applied to Gm
f , the facet of VorGm

f
(O) given

by the bond βf is the image under d∗ of 1
2
ηf + �Gm

f [S],0 + �Gm
f [V−S],0, where �Gm

f [S],0 and
�Gm

f [V−S],0 are viewed as subsets of �0. Similarly, the facet of VorGm
h
(O) given by the bond

−βh is the image under d∗ of −1
2
ηh + �Gm

h [S],0 + �Gm
h [V−S],0. Since Gm

h [S] = Gm
f [S] and

Gm
h [V − S] = Gm

f [V − S], it follows from the first assertion that

(5.2) dmf +
1

2
ηf + �Gm

f [S],0 + �Gm
f [V−S],0 = dmh −

1

2
ηh + �Gm

h [S],0 + �Gm
h [V−S],0.

Since VormH(f) = d∗(dmf ) + VorGm
f
(O), it follows that the facet of VormH(f) defined by βf is

the image under d∗ of the left hand side of (5.2). Analogously, the facet of VormH(h) given
by the bond −βh is the image under d∗ of the right hand side of (5.2). So they coincide.
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The lemma follows since the two Voronoi cells VormH(f) and VormH(h) have disjoint interiors
by Proposition 5.8. �

The following proposition provides a characterization of intersecting Voronoi cells, and
will be used in [AE20a].

Proposition 5.12. Let f1, f2 ∈ C0(G,Z). Let X1, . . . , Xq ⊆ V be the level subsets of
f2− f1, in increasing order. Let D1 be the coherent acyclic orientation of the cut subgraph
of Gm

f1
induced by the ordered partition X1, . . . , Xq of V , and D2 that of the cut subgraph

of Gm
f2

induced by the same partition in the reverse order, Xq, . . . , X1. Then VormH(f1)
intersects VormH(f2) if and only if

(5.3) dmf1 +
1

2
χ

D1
= dmf2 +

1

2
χ

D2
,

where χ
Di

is the characteristic function of Di, taking value +1 at e ∈ E(Di), value −1 at
e ∈ E with ē ∈ E(Di), and value 0 elsewhere, for i = 1, 2. Furthermore, in this case, letting
f1 and f2 be the corresponding faces of VormH(f1) and VormH(f2) to D1 and D2, respectively,
we have

f1 = f2 = VormH(f1) ∩ VormH(f2).

Proof. If VormH(f1) and VormH(f2) intersect then there are x, y ∈ C1(G,R) with dmf1 +x ∈ �m
f1

and dmf2 + y ∈ �m
f2

such that d∗(α) = 0, where

α := dmf2 − dmf1 + y − x.

Claim 1: Equation (5.3) holds and

(5.4) x ∈ 1

2
χ

D1
+

q∑
i=1

�Gm
f1

[Xi],0 and y ∈ 1

2
χ

D2
+

q∑
i=1

�Gm
f2

[Xi],0.

Equivalently, for each e ∈ E(G), we have that

(5.5) dmf1(e) +
1

2
χ

D1
(e) = dmf2(e) +

1

2
χ

D2
(e)

and

(5.6)
∣∣∣xe − 1

2
χ

D1
(e)
∣∣∣ ≤ 1

2
b1,e and

∣∣∣ye − 1

2
χ

D2
(e)
∣∣∣ ≤ 1

2
b2,e,

where bj,e = 1 if e ∈ E(Gm
fj

[Xi]) for some i and bj,e = 0 otherwise, for j = 1, 2.
Indeed, for each i = 1, . . . , q, since f1|Xi

and f2|Xi
differ by a constant, for each e ∈

E(G[Xi]) we have dmf1(e) = dmf2(e) and χ
D1

(e) = χ
D2

(e) = 0. Thus (5.5) and (5.6) hold.
Now, for each j = 2, . . . , q, let Sj := X1 ∪ · · · ∪Xj−1 and Tj := Xj ∪ · · · ∪Xq.
Claim 2: We have that αe ≥ 0 for each e ∈ E(Sj, Tj), with equality only if (5.5) and

(5.6) hold.
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Indeed, given e = uv ∈ E(Sj, Tj) we have that h(v) > h(u), and thus

(5.7)
f2(v)− f2(u) + me

`e
>
f1(v)− f1(u) + me

`e
.

There are four cases to consider, whose analysis finishes the proof of Claim 2:
(1) If e 6∈ E(Gm

f1
) ∪ E(Gm

f2
) then χ

D1
(e) = χ

D2
(e) = 0 and xe = ye = 0, whence (5.6)

holds. Furthermore, αe = dmf2(e)− dmf1(e), whence αe ≥ 0 from (5.7), with equality
only if (5.5) holds.

(2) If e ∈ E(Gm
f1

) but e 6∈ E(Gm
f2

) then χ
D1

(e) = 1 and xe ≤ 1/2, whereas χ
D2

(e) = 0

and ye = 0. Thus αe ≥ dmf2(e)− dmf1(e)− 1/2. But dmf2(e) ≥ dmf1(e) + 1/2 from (5.7),
whence αe ≥ 0, with equality only if xe = 1/2 and dmf2(e) = dmf1(e) + 1/2, that is,
only if (5.5) and (5.6) hold.

(3) If e ∈ E(Gm
f2

) but e 6∈ E(Gm
f1

) then χ
D1

(e) = 0 and xe = 0, whereas χ
D2

(e) = −1

and ye ≥ −1/2. Thus αe ≥ dmf2(e) − dmf1(e) − 1/2. But dmf2(e) ≥ dmf1(e) + 1/2 from
(5.7), whence αe ≥ 0, with equality only if ye = −1/2 and dmf2(e) − 1/2 = dmf1(e),
that is, only if (5.5) and (5.6) hold.

(4) Finally, if e ∈ E(Gm
f1

)∩E(Gm
f2

) then χ
D1

(e) = 1 and xe ≤ 1/2, whereas χ
D2

(e) = −1

and ye ≥ −1/2. Thus αe ≥ dmf2(e)− dmf1(e)− 1. But dmf2(e) ≥ dmf1(e) + 1 from (5.7),
whence αe ≥ 0, with equality only if xe = 1/2, ye = −1/2 and dmf2(e) − 1/2 =
dmf1(e) + 1/2, that is, only if (5.5) and (5.6) hold.

To finish the proof of Claim 1, observe now that, since d∗(α) = 0, we have that∑
e∈E(Sj ,Tj)

αe = 0.

It thus follows from Claim 2 that αe = 0 and hence (5.5) and (5.6) hold for each e ∈
E(Sj, Tj). As this holds for each j = 2, . . . , q, the proof of Claim 1 is finished.

Assume now that (5.3) holds. Now, by Theorem 3.44, we have

(5.8) f1 = d∗
(
dmf1 +

1

2
χ

D1
+

q∑
i=1

�Gm
f1

[Xi],0

)
and f2 = d∗

(
dmf2 +

1

2
χ

D2
+

q∑
i=1

�Gm
f2

[Xi],0

)
.

Now, if (5.3) holds then Gm
f1

[Xi] = Gm
f2

[Xi] for each i. Indeed, if e ∈ E(G[Xi]) for some i
then χ

D1
(e) = χ

D2
(e) = 0, and hence (5.3) yields that e ∈ E(Gm

f1
) if and only if e ∈ E(Gm

f2
).

Thus, if (5.3) holds then it follows from (5.8) that f1 = f2 and hence VormH(f1) intersects
VormH(f2).

Furthermore, a point on VormH(f1)∩VormH(f2) can be expressed as d∗(dmf1 +x) for dmf1 +x ∈
�m
f1

and as d∗(dmf2 + y) for dmf2 + y ∈ �m
f2
; as it is the same point, d∗(α) = 0, where

α := dmf2 − dmf1 + y − x.

It follows then from Claim 1 and from (5.8) that that point is on f1 and on f2. To conclude,

VormH(f1) ∩ VormH(f2) = f1 = f2.
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The proof is finished. �

Proof of Theorem 5.9. Proceed as in the proof of Theorem 4.16 by applying Lemma 5.11.
�
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